Existence and Approximation of Attractive Points of the Widely More Generalized Hybrid Mappings in Hilbert Spaces

We study the widely more generalized hybrid mappings which have been proposed to unify several well-known nonlinear mappings including the nonexpansive mappings, nonspreading mappings, hybrid mappings, and generalized hybrid mappings. Without the convexity assumption, we will establish the existence...

Full description

Bibliographic Details
Main Authors: Sy-Ming Guu, Wataru Takahashi
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/904164
Description
Summary:We study the widely more generalized hybrid mappings which have been proposed to unify several well-known nonlinear mappings including the nonexpansive mappings, nonspreading mappings, hybrid mappings, and generalized hybrid mappings. Without the convexity assumption, we will establish the existence theorem and mean convergence theorem for attractive point of the widely more generalized hybrid mappings in a Hilbert space. Moreover, we prove a weak convergence theorem of Mann’s type and a strong convergence theorem of Shimizu and Takahashi’s type for such a wide class of nonlinear mappings in a Hilbert space. Our results can be viewed as a generalization of Kocourek, Takahashi and Yao, and Hojo and Takahashi where they studied the generalized hybrid mappings.
ISSN:1085-3375
1687-0409