The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter

The Sequential Importance Sampling with Resampling (SISR) particle filter and the SISR with parameter resampling particle filter (SISR-PR) are evaluated for their performance in soil moisture assimilation and the consequent effect on baseflow generation. With respect to the resulting soil moisture t...

Full description

Bibliographic Details
Main Authors: D. A. Plaza, R. De Keyser, G. J. M. De Lannoy, L. Giustarini, P. Matgen, V. R. N. Pauwels
Format: Article
Language:English
Published: Copernicus Publications 2012-02-01
Series:Hydrology and Earth System Sciences
Online Access:http://www.hydrol-earth-syst-sci.net/16/375/2012/hess-16-375-2012.pdf
id doaj-eb3a5a769ff84b82940ac80c23a5bfcc
record_format Article
spelling doaj-eb3a5a769ff84b82940ac80c23a5bfcc2020-11-25T00:23:41ZengCopernicus PublicationsHydrology and Earth System Sciences1027-56061607-79382012-02-0116237539010.5194/hess-16-375-2012The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filterD. A. PlazaR. De KeyserG. J. M. De LannoyL. GiustariniP. MatgenV. R. N. PauwelsThe Sequential Importance Sampling with Resampling (SISR) particle filter and the SISR with parameter resampling particle filter (SISR-PR) are evaluated for their performance in soil moisture assimilation and the consequent effect on baseflow generation. With respect to the resulting soil moisture time series, both filters perform appropriately. However, the SISR filter has a negative effect on the baseflow due to inconsistency between the parameter values and the states after the assimilation. In order to overcome this inconsistency, parameter resampling is applied along with the SISR filter, to obtain consistent parameter values with the analyzed soil moisture state. Extreme parameter replication, which could lead to a particle collapse, is avoided by the perturbation of the parameters with white noise. Both the modeled soil moisture and baseflow are improved if the complementary parameter resampling is applied. The SISR filter with parameter resampling offers an efficient way to deal with biased observations. The robustness of the methodology is evaluated for 3 model parameter sets and 3 assimilation frequencies. <br><br> Overall, the results in this paper indicate that the particle filter is a promising tool for hydrologic modeling purposes, but that an additional parameter resampling may be necessary to consistently update all state variables and fluxes within the model.http://www.hydrol-earth-syst-sci.net/16/375/2012/hess-16-375-2012.pdf
collection DOAJ
language English
format Article
sources DOAJ
author D. A. Plaza
R. De Keyser
G. J. M. De Lannoy
L. Giustarini
P. Matgen
V. R. N. Pauwels
spellingShingle D. A. Plaza
R. De Keyser
G. J. M. De Lannoy
L. Giustarini
P. Matgen
V. R. N. Pauwels
The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
Hydrology and Earth System Sciences
author_facet D. A. Plaza
R. De Keyser
G. J. M. De Lannoy
L. Giustarini
P. Matgen
V. R. N. Pauwels
author_sort D. A. Plaza
title The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
title_short The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
title_full The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
title_fullStr The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
title_full_unstemmed The importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
title_sort importance of parameter resampling for soil moisture data assimilation into hydrologic models using the particle filter
publisher Copernicus Publications
series Hydrology and Earth System Sciences
issn 1027-5606
1607-7938
publishDate 2012-02-01
description The Sequential Importance Sampling with Resampling (SISR) particle filter and the SISR with parameter resampling particle filter (SISR-PR) are evaluated for their performance in soil moisture assimilation and the consequent effect on baseflow generation. With respect to the resulting soil moisture time series, both filters perform appropriately. However, the SISR filter has a negative effect on the baseflow due to inconsistency between the parameter values and the states after the assimilation. In order to overcome this inconsistency, parameter resampling is applied along with the SISR filter, to obtain consistent parameter values with the analyzed soil moisture state. Extreme parameter replication, which could lead to a particle collapse, is avoided by the perturbation of the parameters with white noise. Both the modeled soil moisture and baseflow are improved if the complementary parameter resampling is applied. The SISR filter with parameter resampling offers an efficient way to deal with biased observations. The robustness of the methodology is evaluated for 3 model parameter sets and 3 assimilation frequencies. <br><br> Overall, the results in this paper indicate that the particle filter is a promising tool for hydrologic modeling purposes, but that an additional parameter resampling may be necessary to consistently update all state variables and fluxes within the model.
url http://www.hydrol-earth-syst-sci.net/16/375/2012/hess-16-375-2012.pdf
work_keys_str_mv AT daplaza theimportanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT rdekeyser theimportanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT gjmdelannoy theimportanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT lgiustarini theimportanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT pmatgen theimportanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT vrnpauwels theimportanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT daplaza importanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT rdekeyser importanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT gjmdelannoy importanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT lgiustarini importanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT pmatgen importanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
AT vrnpauwels importanceofparameterresamplingforsoilmoisturedataassimilationintohydrologicmodelsusingtheparticlefilter
_version_ 1725355562702471168