Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data

Live fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this...

Full description

Bibliographic Details
Main Authors: José M. Costa-Saura, Ángel Balaguer-Beser, Luis A. Ruiz, Josep E. Pardo-Pascual, José L. Soriano-Sancho
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/13/18/3726
id doaj-eb0a3fa1850b411bb88513c01c097714
record_format Article
spelling doaj-eb0a3fa1850b411bb88513c01c0977142021-09-26T01:18:37ZengMDPI AGRemote Sensing2072-42922021-09-01133726372610.3390/rs13183726Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological DataJosé M. Costa-Saura0Ángel Balaguer-Beser1Luis A. Ruiz2Josep E. Pardo-Pascual3José L. Soriano-Sancho4Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, ItalyGeo-Environmental Cartography and Remote Sensing Group (CGAT-UPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, SpainGeo-Environmental Cartography and Remote Sensing Group (CGAT-UPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, SpainGeo-Environmental Cartography and Remote Sensing Group (CGAT-UPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, SpainTechnical Unit for Analysis and Prevention of Forest Fires, (VAERSA), Direcció General de Prevenció d’Incendis Forestals, Generalitat Valenciana, Calle de la Democracia, 77 Torre I, 46018 València, SpainLive fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this paper, an empirical model based on multivariate linear regression was constructed for the forest cover classified as shrublands in the central part of the Valencian region in the Eastern Mediterranean of Spain in the fire season. A sample of 15 non-monospecific shrubland sites was used to obtain a spatial representation of this type of forest cover in that area. A prediction model was created by combining spectral indices and meteorological variables. This study demonstrates that the Normalized Difference Moisture Index (NDMI) extracted from Sentinel-2 images and meteorological variables (mean surface temperature and mean wind speed) are a promising combination to derive cost-effective LFMC estimation models. The relationships between LFMC and spectral indices for all sites improved after using an additive site-specific index based on satellite information, reaching a R<sup>2</sup><sub>adj</sub> = 0.70, RMSE = 8.13%, and MAE = 6.33% when predicting the average of LFMC weighted by the canopy cover fraction of each species of all shrub species present in each sampling plot.https://www.mdpi.com/2072-4292/13/18/3726live fuel moisture contentSentinel-2shrublandsNDMImeteorological variablessatellite imagery
collection DOAJ
language English
format Article
sources DOAJ
author José M. Costa-Saura
Ángel Balaguer-Beser
Luis A. Ruiz
Josep E. Pardo-Pascual
José L. Soriano-Sancho
spellingShingle José M. Costa-Saura
Ángel Balaguer-Beser
Luis A. Ruiz
Josep E. Pardo-Pascual
José L. Soriano-Sancho
Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
Remote Sensing
live fuel moisture content
Sentinel-2
shrublands
NDMI
meteorological variables
satellite imagery
author_facet José M. Costa-Saura
Ángel Balaguer-Beser
Luis A. Ruiz
Josep E. Pardo-Pascual
José L. Soriano-Sancho
author_sort José M. Costa-Saura
title Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
title_short Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
title_full Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
title_fullStr Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
title_full_unstemmed Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
title_sort empirical models for spatio-temporal live fuel moisture content estimation in mixed mediterranean vegetation areas using sentinel-2 indices and meteorological data
publisher MDPI AG
series Remote Sensing
issn 2072-4292
publishDate 2021-09-01
description Live fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this paper, an empirical model based on multivariate linear regression was constructed for the forest cover classified as shrublands in the central part of the Valencian region in the Eastern Mediterranean of Spain in the fire season. A sample of 15 non-monospecific shrubland sites was used to obtain a spatial representation of this type of forest cover in that area. A prediction model was created by combining spectral indices and meteorological variables. This study demonstrates that the Normalized Difference Moisture Index (NDMI) extracted from Sentinel-2 images and meteorological variables (mean surface temperature and mean wind speed) are a promising combination to derive cost-effective LFMC estimation models. The relationships between LFMC and spectral indices for all sites improved after using an additive site-specific index based on satellite information, reaching a R<sup>2</sup><sub>adj</sub> = 0.70, RMSE = 8.13%, and MAE = 6.33% when predicting the average of LFMC weighted by the canopy cover fraction of each species of all shrub species present in each sampling plot.
topic live fuel moisture content
Sentinel-2
shrublands
NDMI
meteorological variables
satellite imagery
url https://www.mdpi.com/2072-4292/13/18/3726
work_keys_str_mv AT josemcostasaura empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata
AT angelbalaguerbeser empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata
AT luisaruiz empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata
AT josepepardopascual empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata
AT joselsorianosancho empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata
_version_ 1716869191439482880