Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data
Live fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Remote Sensing |
Subjects: | |
Online Access: | https://www.mdpi.com/2072-4292/13/18/3726 |
id |
doaj-eb0a3fa1850b411bb88513c01c097714 |
---|---|
record_format |
Article |
spelling |
doaj-eb0a3fa1850b411bb88513c01c0977142021-09-26T01:18:37ZengMDPI AGRemote Sensing2072-42922021-09-01133726372610.3390/rs13183726Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological DataJosé M. Costa-Saura0Ángel Balaguer-Beser1Luis A. Ruiz2Josep E. Pardo-Pascual3José L. Soriano-Sancho4Dipartimento di Agraria, Università degli Studi di Sassari, Viale Italia 39, 07100 Sassari, ItalyGeo-Environmental Cartography and Remote Sensing Group (CGAT-UPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, SpainGeo-Environmental Cartography and Remote Sensing Group (CGAT-UPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, SpainGeo-Environmental Cartography and Remote Sensing Group (CGAT-UPV), Universitat Politècnica de València, Camí de Vera s/n, 46022 València, SpainTechnical Unit for Analysis and Prevention of Forest Fires, (VAERSA), Direcció General de Prevenció d’Incendis Forestals, Generalitat Valenciana, Calle de la Democracia, 77 Torre I, 46018 València, SpainLive fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this paper, an empirical model based on multivariate linear regression was constructed for the forest cover classified as shrublands in the central part of the Valencian region in the Eastern Mediterranean of Spain in the fire season. A sample of 15 non-monospecific shrubland sites was used to obtain a spatial representation of this type of forest cover in that area. A prediction model was created by combining spectral indices and meteorological variables. This study demonstrates that the Normalized Difference Moisture Index (NDMI) extracted from Sentinel-2 images and meteorological variables (mean surface temperature and mean wind speed) are a promising combination to derive cost-effective LFMC estimation models. The relationships between LFMC and spectral indices for all sites improved after using an additive site-specific index based on satellite information, reaching a R<sup>2</sup><sub>adj</sub> = 0.70, RMSE = 8.13%, and MAE = 6.33% when predicting the average of LFMC weighted by the canopy cover fraction of each species of all shrub species present in each sampling plot.https://www.mdpi.com/2072-4292/13/18/3726live fuel moisture contentSentinel-2shrublandsNDMImeteorological variablessatellite imagery |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
José M. Costa-Saura Ángel Balaguer-Beser Luis A. Ruiz Josep E. Pardo-Pascual José L. Soriano-Sancho |
spellingShingle |
José M. Costa-Saura Ángel Balaguer-Beser Luis A. Ruiz Josep E. Pardo-Pascual José L. Soriano-Sancho Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data Remote Sensing live fuel moisture content Sentinel-2 shrublands NDMI meteorological variables satellite imagery |
author_facet |
José M. Costa-Saura Ángel Balaguer-Beser Luis A. Ruiz Josep E. Pardo-Pascual José L. Soriano-Sancho |
author_sort |
José M. Costa-Saura |
title |
Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data |
title_short |
Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data |
title_full |
Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data |
title_fullStr |
Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data |
title_full_unstemmed |
Empirical Models for Spatio-Temporal Live Fuel Moisture Content Estimation in Mixed Mediterranean Vegetation Areas Using Sentinel-2 Indices and Meteorological Data |
title_sort |
empirical models for spatio-temporal live fuel moisture content estimation in mixed mediterranean vegetation areas using sentinel-2 indices and meteorological data |
publisher |
MDPI AG |
series |
Remote Sensing |
issn |
2072-4292 |
publishDate |
2021-09-01 |
description |
Live fuel moisture content (LFMC) is an input factor in fire behavior simulation models highly contributing to fire ignition and propagation. Developing models capable of accurately estimating spatio-temporal changes of LFMC in different forest species is needed for wildfire risk assessment. In this paper, an empirical model based on multivariate linear regression was constructed for the forest cover classified as shrublands in the central part of the Valencian region in the Eastern Mediterranean of Spain in the fire season. A sample of 15 non-monospecific shrubland sites was used to obtain a spatial representation of this type of forest cover in that area. A prediction model was created by combining spectral indices and meteorological variables. This study demonstrates that the Normalized Difference Moisture Index (NDMI) extracted from Sentinel-2 images and meteorological variables (mean surface temperature and mean wind speed) are a promising combination to derive cost-effective LFMC estimation models. The relationships between LFMC and spectral indices for all sites improved after using an additive site-specific index based on satellite information, reaching a R<sup>2</sup><sub>adj</sub> = 0.70, RMSE = 8.13%, and MAE = 6.33% when predicting the average of LFMC weighted by the canopy cover fraction of each species of all shrub species present in each sampling plot. |
topic |
live fuel moisture content Sentinel-2 shrublands NDMI meteorological variables satellite imagery |
url |
https://www.mdpi.com/2072-4292/13/18/3726 |
work_keys_str_mv |
AT josemcostasaura empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata AT angelbalaguerbeser empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata AT luisaruiz empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata AT josepepardopascual empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata AT joselsorianosancho empiricalmodelsforspatiotemporallivefuelmoisturecontentestimationinmixedmediterraneanvegetationareasusingsentinel2indicesandmeteorologicaldata |
_version_ |
1716869191439482880 |