Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites
DNA damage and oxidative stress play a critical role in photoageing. Seborrhoeic keratosis (SK) affects sunlight-exposed sites in aged individuals. This study examined the mechanism of photoageing in SK. The guanine deaminase gene, which is involved in purine metabolism, was upregulated with uric ac...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Society for Publication of Acta Dermato-Venereologica
2020-04-01
|
Series: | Acta Dermato-Venereologica |
Subjects: | |
Online Access: |
https://www.medicaljournals.se/acta/content/html/10.2340/00015555-3473
|
id |
doaj-eb0860905bed4f45b65be3d7ad14cf55 |
---|---|
record_format |
Article |
spelling |
doaj-eb0860905bed4f45b65be3d7ad14cf552020-11-25T03:10:24ZengSociety for Publication of Acta Dermato-VenereologicaActa Dermato-Venereologica0001-55551651-20572020-04-011008adv0010910.2340/00015555-34735732Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine MetabolitesKyung Ah Cheong0Ai-Young Lee Department of Dermatology, Dongguk University Ilsan Hospital, 410-773 Goyang-si, Gyenggi-do, Korea. DNA damage and oxidative stress play a critical role in photoageing. Seborrhoeic keratosis (SK) affects sunlight-exposed sites in aged individuals. This study examined the mechanism of photoageing in SK. The guanine deaminase gene, which is involved in purine metabolism, was upregulated with uric acid levels and p21 in SK. Guanine deaminase was detectable in keratinocytes. Repeated exposure to ultraviolet (UV) increased levels of guanine deaminase, together with DNA damage, such as γ-H2AX and cyclobutane pyrimidine dimer formation, generation of reactive oxygen species, and keratinocyte senescence, which were reversed by guanine deaminase knockdown. However, guanine deaminase overexpression and H2O2 formed γ-H2AX, but not cyclobutane pyrimidine dimer. Loss-of-function guanine deaminase mutants reduced the metabolic end-product uric acid, which was increased by exposure to exogenous xanthine. Repeated exposure to UV increased levels of uric acid. Exogenous uric acid increased cellular senescence, reactive oxygen species, and γ-H2AX, similar to guanine deaminase. Overall, guanine deaminase upregulation increased UV-induced keratinocyte senescence in SK, via uric acid mediated by reactive oxygen species followed by DNA damage. https://www.medicaljournals.se/acta/content/html/10.2340/00015555-3473 seborrhoeic keratosis guanine deaminase uv-induced keratinocyte senescence uric acid reactive oxygen species dna damage. |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Kyung Ah Cheong Ai-Young Lee |
spellingShingle |
Kyung Ah Cheong Ai-Young Lee Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites Acta Dermato-Venereologica seborrhoeic keratosis guanine deaminase uv-induced keratinocyte senescence uric acid reactive oxygen species dna damage. |
author_facet |
Kyung Ah Cheong Ai-Young Lee |
author_sort |
Kyung Ah Cheong |
title |
Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites |
title_short |
Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites |
title_full |
Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites |
title_fullStr |
Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites |
title_full_unstemmed |
Guanine Deaminase Stimulates Ultraviolet-induced Keratinocyte Senescence in Seborrhoeic Keratosis via Guanine Metabolites |
title_sort |
guanine deaminase stimulates ultraviolet-induced keratinocyte senescence in seborrhoeic keratosis via guanine metabolites |
publisher |
Society for Publication of Acta Dermato-Venereologica |
series |
Acta Dermato-Venereologica |
issn |
0001-5555 1651-2057 |
publishDate |
2020-04-01 |
description |
DNA damage and oxidative stress play a critical role in photoageing. Seborrhoeic keratosis (SK) affects sunlight-exposed sites in aged individuals. This study examined the mechanism of photoageing in SK. The guanine deaminase gene, which is involved in purine metabolism, was upregulated with uric acid levels and p21 in SK. Guanine deaminase was detectable in keratinocytes. Repeated exposure to ultraviolet (UV) increased levels of guanine deaminase, together with DNA damage, such as γ-H2AX and cyclobutane pyrimidine dimer formation, generation of reactive oxygen species, and keratinocyte senescence, which were reversed by guanine deaminase knockdown. However, guanine deaminase overexpression and H2O2 formed γ-H2AX, but not cyclobutane pyrimidine dimer. Loss-of-function guanine deaminase mutants reduced the metabolic end-product uric acid, which was increased by exposure to exogenous xanthine. Repeated exposure to UV increased levels of uric acid. Exogenous uric acid increased cellular senescence, reactive oxygen species, and γ-H2AX, similar to guanine deaminase. Overall, guanine deaminase upregulation increased UV-induced keratinocyte senescence in SK, via uric acid mediated by reactive oxygen species followed by DNA damage. |
topic |
seborrhoeic keratosis guanine deaminase uv-induced keratinocyte senescence uric acid reactive oxygen species dna damage. |
url |
https://www.medicaljournals.se/acta/content/html/10.2340/00015555-3473
|
work_keys_str_mv |
AT kyungahcheong guaninedeaminasestimulatesultravioletinducedkeratinocytesenescenceinseborrhoeickeratosisviaguaninemetabolites AT aiyounglee guaninedeaminasestimulatesultravioletinducedkeratinocytesenescenceinseborrhoeickeratosisviaguaninemetabolites |
_version_ |
1724658886798999552 |