Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells
Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with me...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2014-02-01
|
Series: | Materials |
Subjects: | |
Online Access: | http://www.mdpi.com/1996-1944/7/2/1318 |
id |
doaj-eafd8baaf1b04856b2cdac53c00beaec |
---|---|
record_format |
Article |
spelling |
doaj-eafd8baaf1b04856b2cdac53c00beaec2020-11-24T23:39:16ZengMDPI AGMaterials1996-19442014-02-01721318134110.3390/ma7021318ma7021318Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar CellsAtteq ur Rehman0Soo Hong Lee1Green Strategic Energy Research Institute, Department of Electronics Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, KoreaGreen Strategic Energy Research Institute, Department of Electronics Engineering, Sejong University, 98 Gunja-dong, Gwangjin-gu, Seoul 143-747, KoreaDeveloping a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed.http://www.mdpi.com/1996-1944/7/2/1318metallizationsolar cellefficiencyscreen printingphotovoltaiccontact resistancenickel/coppermetal platinglight induced plating (LIP)adhesion |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Atteq ur Rehman Soo Hong Lee |
spellingShingle |
Atteq ur Rehman Soo Hong Lee Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells Materials metallization solar cell efficiency screen printing photovoltaic contact resistance nickel/copper metal plating light induced plating (LIP) adhesion |
author_facet |
Atteq ur Rehman Soo Hong Lee |
author_sort |
Atteq ur Rehman |
title |
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells |
title_short |
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells |
title_full |
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells |
title_fullStr |
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells |
title_full_unstemmed |
Review of the Potential of the Ni/Cu Plating Technique for Crystalline Silicon Solar Cells |
title_sort |
review of the potential of the ni/cu plating technique for crystalline silicon solar cells |
publisher |
MDPI AG |
series |
Materials |
issn |
1996-1944 |
publishDate |
2014-02-01 |
description |
Developing a better method for the metallization of silicon solar cells is integral part of realizing superior efficiency. Currently, contact realization using screen printing is the leading technology in the silicon based photovoltaic industry, as it is simple and fast. However, the problem with metallization of this kind is that it has a lower aspect ratio and higher contact resistance, which limits solar cell efficiency. The mounting cost of silver pastes and decreasing silicon wafer thicknesses encourages silicon solar cell manufacturers to develop fresh metallization techniques involving a lower quantity of silver usage and not relying pressing process of screen printing. In recent times nickel/copper (Ni/Cu) based metal plating has emerged as a metallization method that may solve these issues. This paper offers a detailed review and understanding of a Ni/Cu based plating technique for silicon solar cells. The formation of a Ni seed layer by adopting various deposition techniques and a Cu conducting layer using a light induced plating (LIP) process are appraised. Unlike screen-printed metallization, a step involving patterning is crucial for opening the masking layer. Consequently, experimental procedures involving patterning methods are also explicated. Lastly, the issues of adhesion, back ground plating, process complexity and reliability for industrial applications are also addressed. |
topic |
metallization solar cell efficiency screen printing photovoltaic contact resistance nickel/copper metal plating light induced plating (LIP) adhesion |
url |
http://www.mdpi.com/1996-1944/7/2/1318 |
work_keys_str_mv |
AT attequrrehman reviewofthepotentialofthenicuplatingtechniqueforcrystallinesiliconsolarcells AT soohonglee reviewofthepotentialofthenicuplatingtechniqueforcrystallinesiliconsolarcells |
_version_ |
1725514297091555328 |