Pumpkin CmHKT1;1 Controls Shoot Na+ Accumulation via Limiting Na+ Transport from Rootstock to Scion in Grafted Cucumber

Soil salinity adversely affects the growth and yield of crops, including cucumber, one of the most important vegetables in the world. Grafting with salt-tolerant pumpkin as the rootstock effectively improves the growth of cucumber under different salt conditions by limiting Na+ transport from the pu...

Full description

Bibliographic Details
Main Authors: Jingyu Sun, Haishun Cao, Jintao Cheng, Xiaomeng He, Hamza Sohail, Mengliang Niu, Yuan Huang, Zhilong Bie
Format: Article
Language:English
Published: MDPI AG 2018-09-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:http://www.mdpi.com/1422-0067/19/9/2648
Description
Summary:Soil salinity adversely affects the growth and yield of crops, including cucumber, one of the most important vegetables in the world. Grafting with salt-tolerant pumpkin as the rootstock effectively improves the growth of cucumber under different salt conditions by limiting Na+ transport from the pumpkin rootstock to the cucumber scion. High-affinity potassium transporters (HKTs) are crucial for the long distance transport of Na+ in plants, but the function of pumpkin HKTs in this process of grafted cucumber plants remains unclear. In this work, we have characterized CmHKT1;1 as a member of the HKT gene family in Cucurbita moschata and observed an obvious upregulation of CmHKT1;1 in roots under NaCl stress conditions. Heterologous expression analyses in yeast mutants indicated that CmHKT1;1 is a Na+-selective transporter. The transient expression in tobacco epidermal cells and in situ hybridization showed CmHKT1;1 localization at plasma membrane, and preferential expression in root stele. Moreover, ectopic expression of CmHKT1;1 in cucumber decreased the Na+ accumulation in the plants shoots. Finally, the CmHKT1;1 transgenic line as the rootstock decreased the Na+ content in the wild type shoots. These findings suggest that CmHKT1;1 plays a key role in the salt tolerance of grafted cucumber by limiting Na+ transport from the rootstock to the scion and can further be useful for engineering salt tolerance in cucurbit crops.
ISSN:1422-0067