Simultaneous Determination of Several Fiber Contents in Blended Fabrics by Near-Infrared Spectroscopy and Multivariate Calibration

The qualitative and quantitative determination of the components of textile fibers takes an important position in quality control. A fast and nondestructive method of simultaneously analyzing four fiber components in blended fabrics was studied by near-infrared (NIR) spectroscopy combined with multi...

Full description

Bibliographic Details
Main Authors: Hui Chen, Zan Lin, Chao Tan
Format: Article
Language:English
Published: Hindawi Limited 2019-01-01
Series:International Journal of Chemical Engineering
Online Access:http://dx.doi.org/10.1155/2019/8256817
Description
Summary:The qualitative and quantitative determination of the components of textile fibers takes an important position in quality control. A fast and nondestructive method of simultaneously analyzing four fiber components in blended fabrics was studied by near-infrared (NIR) spectroscopy combined with multivariate calibration. Two sample sets including 39 and 25 samples were designed by simplex mixture lattice design methods and used for experiment. Four components include wool, polyester, polyacrylonitrile, and nylon and their mixture is one of the most popular formulas of textiles. Uninformative variable elimination-partial least squares (UVEPLS) and the full-spectrum partial least squares (PLS) were used as the tool. On the test set, the mean standard error of prediction (SEP) and the mean ratio of the standard deviation of the response variable and SEP (RPD) of the full-spectrum PLS model and UVEPLS model were 0.38, 0.32 and 7.6, 8.3, respectively. This result reveals that the UVEPLS can construct local models with acceptable and better performance than the full-spectrum PLS. It indicates that this method is valuable for nondestructive analysis in the field of wool content detection since it can avoid time-consuming, costly, and laborious wet chemical analysis.
ISSN:1687-806X
1687-8078