Compensatory fuzzy logic for intelligent social network analysis
Fuzzy graph theory has gained in visibility for social network analysis. In this work fuzzy logic and their role in modeling social relational networks is discussed. We present a proposal for extending the fuzzy logic framework to intelligent social network analysis using the good properties of robu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | Spanish |
Published: |
Universidad de Ciencias Informáticas
2014-10-01
|
Series: | Revista Cubana de Ciencias Informáticas |
Subjects: | |
Online Access: | http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=807&path[]=301 |
id |
doaj-eae7a6ca52cd42e89f56790003a3e9db |
---|---|
record_format |
Article |
spelling |
doaj-eae7a6ca52cd42e89f56790003a3e9db2020-11-24T21:18:05ZspaUniversidad de Ciencias InformáticasRevista Cubana de Ciencias Informáticas1994-15362227-18992014-10-01847485Compensatory fuzzy logic for intelligent social network analysis Maikel Y. Leyva-Vázquez0Rafael Bello-Lara1Rafael Alejandro Espín-Andrade2Centro de Consultoría y Desarrollo de Arquitecturas Empresariales. Departamento de Soluciones SOA. Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 ½, Torrens, Boyeros, La Habana, Cuba. Centro de Consultoría y Desarrollo de Arquitecturas Empresariales. Departamento de Soluciones SOA. Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 ½, Torrens, Boyeros, La Habana, Cuba. Universidad de Occidente, Mazatlán, México.Fuzzy graph theory has gained in visibility for social network analysis. In this work fuzzy logic and their role in modeling social relational networks is discussed. We present a proposal for extending the fuzzy logic framework to intelligent social network analysis using the good properties of robustness and interpretability of compensatory fuzzy logic. We apply this approach to the concept path importance taking into account the length and strength of the connection. Results obtained with our model are more consistent with the way human make decisions. Additionally a case study to illustrate the applicability of the proposal on a coauthorship network is developed. Our main outcome is a new model for social network analysis based on compensatory fuzzy logic that gives more robust results and allows compensation. Moreover this approach makes emphasis in using language for social network analysis.http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=807&path[]=301coauthorship networkcompensatory fuzzy logicfuzzy graphsocial network analysis. |
collection |
DOAJ |
language |
Spanish |
format |
Article |
sources |
DOAJ |
author |
Maikel Y. Leyva-Vázquez Rafael Bello-Lara Rafael Alejandro Espín-Andrade |
spellingShingle |
Maikel Y. Leyva-Vázquez Rafael Bello-Lara Rafael Alejandro Espín-Andrade Compensatory fuzzy logic for intelligent social network analysis Revista Cubana de Ciencias Informáticas coauthorship network compensatory fuzzy logic fuzzy graph social network analysis. |
author_facet |
Maikel Y. Leyva-Vázquez Rafael Bello-Lara Rafael Alejandro Espín-Andrade |
author_sort |
Maikel Y. Leyva-Vázquez |
title |
Compensatory fuzzy logic for intelligent social network analysis |
title_short |
Compensatory fuzzy logic for intelligent social network analysis |
title_full |
Compensatory fuzzy logic for intelligent social network analysis |
title_fullStr |
Compensatory fuzzy logic for intelligent social network analysis |
title_full_unstemmed |
Compensatory fuzzy logic for intelligent social network analysis |
title_sort |
compensatory fuzzy logic for intelligent social network analysis |
publisher |
Universidad de Ciencias Informáticas |
series |
Revista Cubana de Ciencias Informáticas |
issn |
1994-1536 2227-1899 |
publishDate |
2014-10-01 |
description |
Fuzzy graph theory has gained in visibility for social network analysis. In this work fuzzy logic and their role in modeling social relational networks is discussed. We present a proposal for extending the fuzzy logic framework to intelligent social network analysis using the good properties of robustness and interpretability of compensatory fuzzy logic. We apply this approach to the concept path importance taking into account the length and strength of the connection. Results obtained with our model are more consistent with the way human make decisions. Additionally a case study to illustrate the applicability of the proposal on a coauthorship network is developed. Our main outcome is a new model for social network analysis based on compensatory fuzzy logic that gives more robust results and allows compensation. Moreover this approach makes emphasis in using language for social network analysis. |
topic |
coauthorship network compensatory fuzzy logic fuzzy graph social network analysis. |
url |
http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=807&path[]=301 |
work_keys_str_mv |
AT maikelyleyvavazquez compensatoryfuzzylogicforintelligentsocialnetworkanalysis AT rafaelbellolara compensatoryfuzzylogicforintelligentsocialnetworkanalysis AT rafaelalejandroespinandrade compensatoryfuzzylogicforintelligentsocialnetworkanalysis |
_version_ |
1726010412522012672 |