Compensatory fuzzy logic for intelligent social network analysis

Fuzzy graph theory has gained in visibility for social network analysis. In this work fuzzy logic and their role in modeling social relational networks is discussed. We present a proposal for extending the fuzzy logic framework to intelligent social network analysis using the good properties of robu...

Full description

Bibliographic Details
Main Authors: Maikel Y. Leyva-Vázquez, Rafael Bello-Lara, Rafael Alejandro Espín-Andrade
Format: Article
Language:Spanish
Published: Universidad de Ciencias Informáticas 2014-10-01
Series:Revista Cubana de Ciencias Informáticas
Subjects:
Online Access:http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=807&path[]=301
id doaj-eae7a6ca52cd42e89f56790003a3e9db
record_format Article
spelling doaj-eae7a6ca52cd42e89f56790003a3e9db2020-11-24T21:18:05ZspaUniversidad de Ciencias InformáticasRevista Cubana de Ciencias Informáticas1994-15362227-18992014-10-01847485Compensatory fuzzy logic for intelligent social network analysis Maikel Y. Leyva-Vázquez0Rafael Bello-Lara1Rafael Alejandro Espín-Andrade2Centro de Consultoría y Desarrollo de Arquitecturas Empresariales. Departamento de Soluciones SOA. Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 ½, Torrens, Boyeros, La Habana, Cuba. Centro de Consultoría y Desarrollo de Arquitecturas Empresariales. Departamento de Soluciones SOA. Universidad de las Ciencias Informáticas, Carretera a San Antonio de los Baños, km 2 ½, Torrens, Boyeros, La Habana, Cuba. Universidad de Occidente, Mazatlán, México.Fuzzy graph theory has gained in visibility for social network analysis. In this work fuzzy logic and their role in modeling social relational networks is discussed. We present a proposal for extending the fuzzy logic framework to intelligent social network analysis using the good properties of robustness and interpretability of compensatory fuzzy logic. We apply this approach to the concept path importance taking into account the length and strength of the connection. Results obtained with our model are more consistent with the way human make decisions. Additionally a case study to illustrate the applicability of the proposal on a coauthorship network is developed. Our main outcome is a new model for social network analysis based on compensatory fuzzy logic that gives more robust results and allows compensation. Moreover this approach makes emphasis in using language for social network analysis.http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=807&path[]=301coauthorship networkcompensatory fuzzy logicfuzzy graphsocial network analysis.
collection DOAJ
language Spanish
format Article
sources DOAJ
author Maikel Y. Leyva-Vázquez
Rafael Bello-Lara
Rafael Alejandro Espín-Andrade
spellingShingle Maikel Y. Leyva-Vázquez
Rafael Bello-Lara
Rafael Alejandro Espín-Andrade
Compensatory fuzzy logic for intelligent social network analysis
Revista Cubana de Ciencias Informáticas
coauthorship network
compensatory fuzzy logic
fuzzy graph
social network analysis.
author_facet Maikel Y. Leyva-Vázquez
Rafael Bello-Lara
Rafael Alejandro Espín-Andrade
author_sort Maikel Y. Leyva-Vázquez
title Compensatory fuzzy logic for intelligent social network analysis
title_short Compensatory fuzzy logic for intelligent social network analysis
title_full Compensatory fuzzy logic for intelligent social network analysis
title_fullStr Compensatory fuzzy logic for intelligent social network analysis
title_full_unstemmed Compensatory fuzzy logic for intelligent social network analysis
title_sort compensatory fuzzy logic for intelligent social network analysis
publisher Universidad de Ciencias Informáticas
series Revista Cubana de Ciencias Informáticas
issn 1994-1536
2227-1899
publishDate 2014-10-01
description Fuzzy graph theory has gained in visibility for social network analysis. In this work fuzzy logic and their role in modeling social relational networks is discussed. We present a proposal for extending the fuzzy logic framework to intelligent social network analysis using the good properties of robustness and interpretability of compensatory fuzzy logic. We apply this approach to the concept path importance taking into account the length and strength of the connection. Results obtained with our model are more consistent with the way human make decisions. Additionally a case study to illustrate the applicability of the proposal on a coauthorship network is developed. Our main outcome is a new model for social network analysis based on compensatory fuzzy logic that gives more robust results and allows compensation. Moreover this approach makes emphasis in using language for social network analysis.
topic coauthorship network
compensatory fuzzy logic
fuzzy graph
social network analysis.
url http://rcci.uci.cu/index.php?journal=rcci&page=article&op=view&path[]=807&path[]=301
work_keys_str_mv AT maikelyleyvavazquez compensatoryfuzzylogicforintelligentsocialnetworkanalysis
AT rafaelbellolara compensatoryfuzzylogicforintelligentsocialnetworkanalysis
AT rafaelalejandroespinandrade compensatoryfuzzylogicforintelligentsocialnetworkanalysis
_version_ 1726010412522012672