A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data
<p>A new methodology for performing long-term source apportionment (SA) using positive matrix factorization (PMF) is presented. The method is implemented within the SoFi Pro software package and uses the multilinear engine (ME-2) as a PMF solver. The technique is applied to a 1-year aerosol c...
Main Authors: | , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2021-02-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://amt.copernicus.org/articles/14/923/2021/amt-14-923-2021.pdf |
id |
doaj-eaddd5d95efc451f94fdd2164601d2fe |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
F. Canonaco F. Canonaco A. Tobler A. Tobler G. Chen Y. Sosedova J. G. Slowik C. Bozzetti K. R. Daellenbach K. R. Daellenbach I. El Haddad M. Crippa R.-J. Huang M. Furger U. Baltensperger A. S. H. Prévôt |
spellingShingle |
F. Canonaco F. Canonaco A. Tobler A. Tobler G. Chen Y. Sosedova J. G. Slowik C. Bozzetti K. R. Daellenbach K. R. Daellenbach I. El Haddad M. Crippa R.-J. Huang M. Furger U. Baltensperger A. S. H. Prévôt A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data Atmospheric Measurement Techniques |
author_facet |
F. Canonaco F. Canonaco A. Tobler A. Tobler G. Chen Y. Sosedova J. G. Slowik C. Bozzetti K. R. Daellenbach K. R. Daellenbach I. El Haddad M. Crippa R.-J. Huang M. Furger U. Baltensperger A. S. H. Prévôt |
author_sort |
F. Canonaco |
title |
A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data |
title_short |
A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data |
title_full |
A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data |
title_fullStr |
A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data |
title_full_unstemmed |
A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol data |
title_sort |
new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using sofi pro: application to 1 year of organic aerosol data |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2021-02-01 |
description |
<p>A new methodology for performing long-term source apportionment (SA) using positive matrix factorization (PMF) is presented. The method is implemented within the SoFi Pro software package
and uses the multilinear engine (ME-2) as a PMF solver. The technique is applied to a 1-year aerosol chemical speciation monitor (ACSM) dataset from downtown Zurich, Switzerland.</p>
<p>The measured organic aerosol mass spectra were analyzed by PMF using a small (14 <span class="inline-formula">d</span>) and rolling PMF window to account for the temporal evolution of the sources. The rotational ambiguity is explored and the uncertainties of the PMF solutions were estimated. Factor–tracer correlations for averaged seasonal results from the rolling window analysis are higher than those retrieved from
conventional PMF analyses of individual seasons, highlighting the improved performance of the
rolling window algorithm for long-term data.</p>
<p>In this study four to five factors were tested for every PMF window. Factor profiles for primary organic aerosol from traffic (HOA), cooking (COA) and biomass burning (BBOA) were
constrained. Secondary organic aerosol was represented by either the combination of semi-volatile
and low-volatility organic aerosol (SV-OOA and LV-OOA, respectively) or by a single OOA when this separation was not robust. This scheme led to roughly 40 000 PMF runs. Full visual inspection of
all these PMF runs is unrealistic and is replaced by predefined user-selected criteria, which allow
factor sorting and PMF run acceptance/rejection. The selected criteria for traffic (HOA) and BBOA were the correlation with equivalent black carbon from traffic (eBC<span class="inline-formula"><sub>tr</sub></span>) and the explained variation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d797e7418bb082ad5eec13189d6e5a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-923-2021-ie00001.svg" width="23pt" height="14pt" src="amt-14-923-2021-ie00001.png"/></svg:svg></span></span> 60, respectively. COA was assessed by the prominence of a lunchtime
concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated based on the fractions of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="55e7511b997f0b1e1b80fcef0834494e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-923-2021-ie00002.svg" width="23pt" height="14pt" src="amt-14-923-2021-ie00002.png"/></svg:svg></span></span> 43 and 44 in their respective factor profiles. Seasonal <i>pre</i>-tests revealed a
non-continuous separation of OOA into SV-OOA and LV-OOA, in particular during the warm
seasons. Therefore, a differentiation between four-factor solutions (HOA, COA, BBOA and OOA) and
five-factor solutions (HOA, COA, BBOA, SV-OOA and LV-OOA) was also conducted based on the criterion
for SV-OOA.</p>
<p>HOA and COA contribute between 0.4–0.7 <span class="inline-formula">µg m<sup>−3</sup></span> (7.8 %–9.0 %) and
0.7–1.2 <span class="inline-formula">µg m<sup>−3</sup></span> (12.2 %–15.7 %) on average throughout the year,
respectively. BBOA shows a strong yearly cycle with the lowest mean concentrations in summer
(0.6 <span class="inline-formula">µg m<sup>−3</sup></span>, 12.0 %), slightly higher mean concentrations during spring and fall (1.0 and 1.5 <span class="inline-formula">µg m<sup>−3</sup></span>, or 15.6 %<span id="page924"/> and 18.6 %, respectively), and the highest mean concentrations during winter (1.9 <span class="inline-formula">µg m<sup>−3</sup></span>, 25.0 %). In summer, OOA is separated into SV-OOA and LV-OOA, with mean concentrations of 1.4 <span class="inline-formula">µg m<sup>−3</sup></span>
(26.5 %) and 2.2 <span class="inline-formula">µg m<sup>−3</sup></span> (40.3 %), respectively. For the remaining seasons
the seasonal concentrations of SV-OOA, LV-OOA and OOA range from 0.3 to 1.1 <span class="inline-formula">µg m<sup>−3</sup></span> (3.4 %–15.9 %), from 0.6 to 2.2 <span class="inline-formula">µg m<sup>−3</sup></span> (7.7 %–33.7 %) and
from 0.9 to 3.1 <span class="inline-formula">µg m<sup>−3</sup></span> (13.7 %–39.9 %), respectively. The relative PMF errors modeled for this study for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA are on average <span class="inline-formula">±34 <i>%</i></span>, <span class="inline-formula">±27 <i>%</i></span>, <span class="inline-formula">±30 <i>%</i></span>, <span class="inline-formula">±11 <i>%</i></span>, <span class="inline-formula">±25 <i>%</i></span> and <span class="inline-formula">±12 <i>%</i></span>, respectively.</p> |
url |
https://amt.copernicus.org/articles/14/923/2021/amt-14-923-2021.pdf |
work_keys_str_mv |
AT fcanonaco anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT fcanonaco anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT atobler anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT atobler anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT gchen anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ysosedova anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT jgslowik anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT cbozzetti anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT krdaellenbach anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT krdaellenbach anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ielhaddad anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT mcrippa anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT rjhuang anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT mfurger anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ubaltensperger anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ashprevot anewmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT fcanonaco newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT fcanonaco newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT atobler newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT atobler newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT gchen newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ysosedova newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT jgslowik newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT cbozzetti newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT krdaellenbach newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT krdaellenbach newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ielhaddad newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT mcrippa newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT rjhuang newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT mfurger newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ubaltensperger newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata AT ashprevot newmethodforlongtermsourceapportionmentwithtimedependentfactorprofilesanduncertaintyassessmentusingsofiproapplicationto1yearoforganicaerosoldata |
_version_ |
1724280340149698560 |
spelling |
doaj-eaddd5d95efc451f94fdd2164601d2fe2021-02-08T05:38:22ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482021-02-011492394310.5194/amt-14-923-2021A new method for long-term source apportionment with time-dependent factor profiles and uncertainty assessment using SoFi Pro: application to 1 year of organic aerosol dataF. Canonaco0F. Canonaco1A. Tobler2A. Tobler3G. Chen4Y. Sosedova5J. G. Slowik6C. Bozzetti7K. R. Daellenbach8K. R. Daellenbach9I. El Haddad10M. Crippa11R.-J. Huang12M. Furger13U. Baltensperger14A. S. H. Prévôt15Datalystica Ltd., Park innovAARE, 5234 Villigen, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandDatalystica Ltd., Park innovAARE, 5234 Villigen, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandDatalystica Ltd., Park innovAARE, 5234 Villigen, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandDatalystica Ltd., Park innovAARE, 5234 Villigen, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandInstitute for Atmospheric and Earth System Research, Helsinki, FinlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandEuropean Commission, Joint Research Centre (JRC), Via Fermi, 2749, 21027 Ispra, ItalyState Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, and Key Laboratory of Aerosol Chemistry and Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, ChinaPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, SwitzerlandPaul Scherrer Institute, Laboratory of Atmospheric Chemistry, 5232 Villigen PSI, Switzerland<p>A new methodology for performing long-term source apportionment (SA) using positive matrix factorization (PMF) is presented. The method is implemented within the SoFi Pro software package and uses the multilinear engine (ME-2) as a PMF solver. The technique is applied to a 1-year aerosol chemical speciation monitor (ACSM) dataset from downtown Zurich, Switzerland.</p> <p>The measured organic aerosol mass spectra were analyzed by PMF using a small (14 <span class="inline-formula">d</span>) and rolling PMF window to account for the temporal evolution of the sources. The rotational ambiguity is explored and the uncertainties of the PMF solutions were estimated. Factor–tracer correlations for averaged seasonal results from the rolling window analysis are higher than those retrieved from conventional PMF analyses of individual seasons, highlighting the improved performance of the rolling window algorithm for long-term data.</p> <p>In this study four to five factors were tested for every PMF window. Factor profiles for primary organic aerosol from traffic (HOA), cooking (COA) and biomass burning (BBOA) were constrained. Secondary organic aerosol was represented by either the combination of semi-volatile and low-volatility organic aerosol (SV-OOA and LV-OOA, respectively) or by a single OOA when this separation was not robust. This scheme led to roughly 40 000 PMF runs. Full visual inspection of all these PMF runs is unrealistic and is replaced by predefined user-selected criteria, which allow factor sorting and PMF run acceptance/rejection. The selected criteria for traffic (HOA) and BBOA were the correlation with equivalent black carbon from traffic (eBC<span class="inline-formula"><sub>tr</sub></span>) and the explained variation of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="d797e7418bb082ad5eec13189d6e5a75"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-923-2021-ie00001.svg" width="23pt" height="14pt" src="amt-14-923-2021-ie00001.png"/></svg:svg></span></span> 60, respectively. COA was assessed by the prominence of a lunchtime concentration peak within the diurnal cycle. SV-OOA and LV-OOA were evaluated based on the fractions of <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><mi>m</mi><mo>/</mo><mi>z</mi></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="23pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="55e7511b997f0b1e1b80fcef0834494e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-14-923-2021-ie00002.svg" width="23pt" height="14pt" src="amt-14-923-2021-ie00002.png"/></svg:svg></span></span> 43 and 44 in their respective factor profiles. Seasonal <i>pre</i>-tests revealed a non-continuous separation of OOA into SV-OOA and LV-OOA, in particular during the warm seasons. Therefore, a differentiation between four-factor solutions (HOA, COA, BBOA and OOA) and five-factor solutions (HOA, COA, BBOA, SV-OOA and LV-OOA) was also conducted based on the criterion for SV-OOA.</p> <p>HOA and COA contribute between 0.4–0.7 <span class="inline-formula">µg m<sup>−3</sup></span> (7.8 %–9.0 %) and 0.7–1.2 <span class="inline-formula">µg m<sup>−3</sup></span> (12.2 %–15.7 %) on average throughout the year, respectively. BBOA shows a strong yearly cycle with the lowest mean concentrations in summer (0.6 <span class="inline-formula">µg m<sup>−3</sup></span>, 12.0 %), slightly higher mean concentrations during spring and fall (1.0 and 1.5 <span class="inline-formula">µg m<sup>−3</sup></span>, or 15.6 %<span id="page924"/> and 18.6 %, respectively), and the highest mean concentrations during winter (1.9 <span class="inline-formula">µg m<sup>−3</sup></span>, 25.0 %). In summer, OOA is separated into SV-OOA and LV-OOA, with mean concentrations of 1.4 <span class="inline-formula">µg m<sup>−3</sup></span> (26.5 %) and 2.2 <span class="inline-formula">µg m<sup>−3</sup></span> (40.3 %), respectively. For the remaining seasons the seasonal concentrations of SV-OOA, LV-OOA and OOA range from 0.3 to 1.1 <span class="inline-formula">µg m<sup>−3</sup></span> (3.4 %–15.9 %), from 0.6 to 2.2 <span class="inline-formula">µg m<sup>−3</sup></span> (7.7 %–33.7 %) and from 0.9 to 3.1 <span class="inline-formula">µg m<sup>−3</sup></span> (13.7 %–39.9 %), respectively. The relative PMF errors modeled for this study for HOA, COA, BBOA, LV-OOA, SV-OOA and OOA are on average <span class="inline-formula">±34 <i>%</i></span>, <span class="inline-formula">±27 <i>%</i></span>, <span class="inline-formula">±30 <i>%</i></span>, <span class="inline-formula">±11 <i>%</i></span>, <span class="inline-formula">±25 <i>%</i></span> and <span class="inline-formula">±12 <i>%</i></span>, respectively.</p>https://amt.copernicus.org/articles/14/923/2021/amt-14-923-2021.pdf |