Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing
Connectionist architectures constitute a popular method for modelling animal associative learning processes in order to glean insights into the formation of cognitive capacities. Such approaches (based on purely feedforward activity) are considered limited in their ability to capture relational cogn...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
De Gruyter
2019-10-01
|
Series: | Open Information Science |
Subjects: | |
Online Access: | https://doi.org/10.1515/opis-2019-0017 |
id |
doaj-eadc9e6cc19f418bb53477ea4980e7c1 |
---|---|
record_format |
Article |
spelling |
doaj-eadc9e6cc19f418bb53477ea4980e7c12021-09-05T20:51:21ZengDe GruyterOpen Information Science2451-17812019-10-013123526010.1515/opis-2019-0017opis-2019-0017Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative ProcessingLowe Robert0Almér Alexander1Balkenius Christian2Department of Applied IT, Division of Cognition and Communication, University of GothenburgDepartment of Applied IT, Division of Cognition and Communication, University of GothenburgLund UniversityConnectionist architectures constitute a popular method for modelling animal associative learning processes in order to glean insights into the formation of cognitive capacities. Such approaches (based on purely feedforward activity) are considered limited in their ability to capture relational cognitive capacities. Pavlovian learning value-based models, being not based purely on fully connected feedforward structure, have demonstrated learning capabilities that often mimic those of ‘higher’ relational cognition. Capturing data using such models often reveals how associative mechanisms can exploit structure in the experimental setting, so that ‘explicit’ relational cognitive capacities are not, in fact, required. On the other hand, models of relational cognition, implemented as neural networks, permit formation and retrieval of relational representations of varying levels of complexity. The flexible processing capacities of such models are, however, are subject to constraints as to how offline relational versus online (real-time, real-world) processing may be mediated. In the current article, we review the potential for building a connectionist-relational cognitive architecture with reference to the representational rank view of cognitive capacity put forward by Halford et al. Through interfacing system 1-like (connectionist/associative learning) and system 2-like (relational-cognition) computations through a bidirectional affective processing approach, continuity between Halford et al’s cognitive systems may be operationalized according to real world/online constraints. By addressing i) and ii) in this manner, this paper puts forward a testable unifying framework for system 1-like and system 2-like cognition.https://doi.org/10.1515/opis-2019-0017system 1-system 2relational cognitionassociative learningrepresentational rankaffective computationhabits |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Lowe Robert Almér Alexander Balkenius Christian |
spellingShingle |
Lowe Robert Almér Alexander Balkenius Christian Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing Open Information Science system 1-system 2 relational cognition associative learning representational rank affective computation habits |
author_facet |
Lowe Robert Almér Alexander Balkenius Christian |
author_sort |
Lowe Robert |
title |
Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing |
title_short |
Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing |
title_full |
Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing |
title_fullStr |
Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing |
title_full_unstemmed |
Bridging Connectionism and Relational Cognition through Bi-directional Affective-Associative Processing |
title_sort |
bridging connectionism and relational cognition through bi-directional affective-associative processing |
publisher |
De Gruyter |
series |
Open Information Science |
issn |
2451-1781 |
publishDate |
2019-10-01 |
description |
Connectionist architectures constitute a popular method for modelling animal associative learning processes in order to glean insights into the formation of cognitive capacities. Such approaches (based on purely feedforward activity) are considered limited in their ability to capture relational cognitive capacities. Pavlovian learning value-based models, being not based purely on fully connected feedforward structure, have demonstrated learning capabilities that often mimic those of ‘higher’ relational cognition. Capturing data using such models often reveals how associative mechanisms can exploit structure in the experimental setting, so that ‘explicit’ relational cognitive capacities are not, in fact, required. On the other hand, models of relational cognition, implemented as neural networks, permit formation and retrieval of relational representations of varying levels of complexity. The flexible processing capacities of such models are, however, are subject to constraints as to how offline relational versus online (real-time, real-world) processing may be mediated. In the current article, we review the potential for building a connectionist-relational cognitive architecture with reference to the representational rank view of cognitive capacity put forward by Halford et al. Through interfacing system 1-like (connectionist/associative learning) and system 2-like (relational-cognition) computations through a bidirectional affective processing approach, continuity between Halford et al’s cognitive systems may be operationalized according to real world/online constraints. By addressing i) and ii) in this manner, this paper puts forward a testable unifying framework for system 1-like and system 2-like cognition. |
topic |
system 1-system 2 relational cognition associative learning representational rank affective computation habits |
url |
https://doi.org/10.1515/opis-2019-0017 |
work_keys_str_mv |
AT lowerobert bridgingconnectionismandrelationalcognitionthroughbidirectionalaffectiveassociativeprocessing AT almeralexander bridgingconnectionismandrelationalcognitionthroughbidirectionalaffectiveassociativeprocessing AT balkeniuschristian bridgingconnectionismandrelationalcognitionthroughbidirectionalaffectiveassociativeprocessing |
_version_ |
1717783927788142592 |