On the Structure of Cooperative and Competitive Solutions for a Generalized Assignment Game

We study cooperative and competitive solutions for a many-to-many generalization of Shapley and Shubik’s (1971) assignment game. We consider the Core, three other notions of group stability, and two alternative definitions of competitive equilibrium. We show that (i) each group stable set is closely...

Full description

Bibliographic Details
Main Authors: R. Pablo Arribillaga, Jordi Massó, Alejandro Neme
Format: Article
Language:English
Published: Hindawi Limited 2014-01-01
Series:Journal of Applied Mathematics
Online Access:http://dx.doi.org/10.1155/2014/190614
Description
Summary:We study cooperative and competitive solutions for a many-to-many generalization of Shapley and Shubik’s (1971) assignment game. We consider the Core, three other notions of group stability, and two alternative definitions of competitive equilibrium. We show that (i) each group stable set is closely related to the Core of certain games defined using a proper notion of blocking and (ii) each group stable set contains the set of payoff vectors associated with the two definitions of competitive equilibrium. We also show that all six solutions maintain a strictly nested structure. Moreover, each solution can be identified with a set of matrices of (discriminated) prices which indicate how gains from trade are distributed among buyers and sellers. In all cases such matrices arise as solutions of a system of linear inequalities. Hence, all six solutions have the same properties from a structural and computational point of view.
ISSN:1110-757X
1687-0042