Balancing and positioning for a gun control system based on fuzzy fractional order proportional–integral–derivative strategy
To achieve perfect behavior of the unbalanced barrel of a gun control system, a novel control strategy for simultaneous balancing and positioning of the system is proposed, physically being on the basis of a novel hydraulic cylinder with three cavities. The fuzzy fractional order proportional–integr...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SAGE Publishing
2016-03-01
|
Series: | Advances in Mechanical Engineering |
Online Access: | https://doi.org/10.1177/1687814016639854 |
Summary: | To achieve perfect behavior of the unbalanced barrel of a gun control system, a novel control strategy for simultaneous balancing and positioning of the system is proposed, physically being on the basis of a novel hydraulic cylinder with three cavities. The fuzzy fractional order proportional–integral–derivative controller is developed, and the particle swarm optimization algorithm is adopted for optimal selection of the control parameters for the gun control system. The results demonstrate that the fuzzy fractional order proportional–integral–derivative control strategy can finely improve dynamic performance of the control system, and the nonlinear characteristics of system can be effectively suppressed. |
---|---|
ISSN: | 1687-8140 |