Removal of Chromium(VI) by Chitosan Beads Modified with Sodium Dodecyl Sulfate (SDS)
In this study, chitosan beads modified with sodium dodecyl sulfate (SDS) were successfully synthesized and employed for the removal of chromium(VI) (Cr(VI)). The adsorption performance of the adsorbent (SDS-chitosan beads) was examined by batch experiments. The partition coefficient (PC) as well as...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-07-01
|
Series: | Applied Sciences |
Subjects: | |
Online Access: | https://www.mdpi.com/2076-3417/10/14/4745 |
Summary: | In this study, chitosan beads modified with sodium dodecyl sulfate (SDS) were successfully synthesized and employed for the removal of chromium(VI) (Cr(VI)). The adsorption performance of the adsorbent (SDS-chitosan beads) was examined by batch experiments. The partition coefficient (PC) as well as the adsorption capacity were evaluated to assess the true performance of the adsorbent in this work. The adsorbent (SDS-chitosan beads) showed a maximum Cr(VI) adsorption capacity of 3.23 mg·g<sup>−1</sup> and PC of 9.5 mg·g<sup>−1</sup>·mM<sup>−1</sup> for Cr(VI). The prepared adsorbent was characterized by different techniques such as scanning electron microscopy-energy dispersive X-ray spectroscopy (SEM-EDS), X-ray photoelectron spectroscopy (XPS) and Fourier transform-infrared spectroscopy (FT-IR). We used inductively coupled plasma mass spectrometry (ICP-MS) for the determination of Cr(VI) in solution. The experimental data could be well-fitted by pseudo-second-order kinetic and Langmuir isotherm models. The thermodynamic studies indicated that the adsorption process was favorable under the higher temperature condition. The SDS-modified chitosan beads synthesized in this work represent a promising adsorbent for removing Cr(VI). |
---|---|
ISSN: | 2076-3417 |