The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.

Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the...

Full description

Bibliographic Details
Main Authors: Richard J Bomphrey, Simon M Walker, Graham K Taylor
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2009-11-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC2773008?pdf=render
id doaj-ea97213a29a34f24bb17bb5aef3281f6
record_format Article
spelling doaj-ea97213a29a34f24bb17bb5aef3281f62020-11-24T21:50:21ZengPublic Library of Science (PLoS)PLoS ONE1932-62032009-11-01411e785210.1371/journal.pone.0007852The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.Richard J BomphreySimon M WalkerGraham K TaylorDespite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject's instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms(-1) and 2.3 ms(-1), with a maximum of 2.5 ms(-1). Our flies tended to dive faster than they climbed, with a maximum descent rate (-2.4 ms(-1)) almost double the maximum climb rate (1.2 ms(-1)). Modal turn rate was around 240 degrees s(-1), with maximal rates in excess of 1700 degrees s(-1). We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g.http://europepmc.org/articles/PMC2773008?pdf=render
collection DOAJ
language English
format Article
sources DOAJ
author Richard J Bomphrey
Simon M Walker
Graham K Taylor
spellingShingle Richard J Bomphrey
Simon M Walker
Graham K Taylor
The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.
PLoS ONE
author_facet Richard J Bomphrey
Simon M Walker
Graham K Taylor
author_sort Richard J Bomphrey
title The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.
title_short The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.
title_full The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.
title_fullStr The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.
title_full_unstemmed The typical flight performance of blowflies: measuring the normal performance envelope of Calliphora vicina using a novel corner-cube arena.
title_sort typical flight performance of blowflies: measuring the normal performance envelope of calliphora vicina using a novel corner-cube arena.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2009-11-01
description Despite a wealth of evidence demonstrating extraordinary maximal performance, little is known about the routine flight performance of insects. We present a set of techniques for benchmarking performance characteristics of insects in free flight, demonstrated using a model species, and comment on the significance of the performance observed. Free-flying blowflies (Calliphora vicina) were filmed inside a novel mirrored arena comprising a large (1.6 m1.6 m1.6 m) corner-cube reflector using a single high-speed digital video camera (250 or 500 fps). This arrangement permitted accurate reconstruction of the flies' 3-dimensional trajectories without the need for synchronisation hardware, by virtue of the multiple reflections of a subject within the arena. Image sequences were analysed using custom-written automated tracking software, and processed using a self-calibrating bundle adjustment procedure to determine the subject's instantaneous 3-dimensional position. We illustrate our method by using these trajectory data to benchmark the routine flight performance envelope of our flies. Flight speeds were most commonly observed between 1.2 ms(-1) and 2.3 ms(-1), with a maximum of 2.5 ms(-1). Our flies tended to dive faster than they climbed, with a maximum descent rate (-2.4 ms(-1)) almost double the maximum climb rate (1.2 ms(-1)). Modal turn rate was around 240 degrees s(-1), with maximal rates in excess of 1700 degrees s(-1). We used the maximal flight performance we observed during normal flight to construct notional physical limits on the blowfly flight envelope, and used the distribution of observations within that notional envelope to postulate behavioural preferences or physiological and anatomical constraints. The flight trajectories we recorded were never steady: rather they were constantly accelerating or decelerating, with maximum tangential accelerations and maximum centripetal accelerations on the order of 3 g.
url http://europepmc.org/articles/PMC2773008?pdf=render
work_keys_str_mv AT richardjbomphrey thetypicalflightperformanceofblowfliesmeasuringthenormalperformanceenvelopeofcalliphoravicinausinganovelcornercubearena
AT simonmwalker thetypicalflightperformanceofblowfliesmeasuringthenormalperformanceenvelopeofcalliphoravicinausinganovelcornercubearena
AT grahamktaylor thetypicalflightperformanceofblowfliesmeasuringthenormalperformanceenvelopeofcalliphoravicinausinganovelcornercubearena
AT richardjbomphrey typicalflightperformanceofblowfliesmeasuringthenormalperformanceenvelopeofcalliphoravicinausinganovelcornercubearena
AT simonmwalker typicalflightperformanceofblowfliesmeasuringthenormalperformanceenvelopeofcalliphoravicinausinganovelcornercubearena
AT grahamktaylor typicalflightperformanceofblowfliesmeasuringthenormalperformanceenvelopeofcalliphoravicinausinganovelcornercubearena
_version_ 1725884585445687296