Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3)
Xi-Feng Zhang,1,2 Feng-Hua Huang,1 Guo-Liang Zhang,3 Ding-Ping Bai,4 De Felici Massimo,5 Yi-Fan Huang,4 Sangiliyandi Gurunathan6 1College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China; 2Institute of Reproductive Sciences, Qingdao Agricultural University, Q...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Dove Medical Press
2017-10-01
|
Series: | International Journal of Nanomedicine |
Subjects: | |
Online Access: | https://www.dovepress.com/novel-biomolecule-lycopene-reduced-graphene-oxide-silver-nanoparticle--peer-reviewed-article-IJN |
id |
doaj-ea61ea9fe1f94378945a4a9a82f06af0 |
---|---|
record_format |
Article |
spelling |
doaj-ea61ea9fe1f94378945a4a9a82f06af02020-11-25T00:36:42ZengDove Medical PressInternational Journal of Nanomedicine1178-20132017-10-01Volume 127551757535169Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3)Zhang XFHuang FHZhang GLBai DPMassimo DFHuang YFGurunathan SXi-Feng Zhang,1,2 Feng-Hua Huang,1 Guo-Liang Zhang,3 Ding-Ping Bai,4 De Felici Massimo,5 Yi-Fan Huang,4 Sangiliyandi Gurunathan6 1College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China; 2Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; 3National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, DongE, Shandong, China; 4Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China; 5Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy; 6Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea Background: Recently, there has been much interest in the field of nanomedicine to improve prevention, diagnosis, and treatment. Combination therapy seems to be most effective when two different molecules that work by different mechanisms are combined at low dose, thereby decreasing the possibility of drug resistance and occurrence of unbearable side effects. Based on this consideration, the study was designed to investigate the combination effect of reduced graphene oxide-silver nanoparticles (rGO-AgNPs) and trichostatin A (TSA) in human ovarian cancer cells (SKOV3). Methods: The rGO-AgNPs were synthesized using a biomolecule called lycopene, and the resultant product was characterized by various analytical techniques. The combination effect of rGO-Ag and TSA was investigated in SKOV3 cells using various cellular assays such as cell viability, cytotoxicity, and immunofluorescence analysis. Results: AgNPs were uniformly distributed on the surface of graphene sheet with an average size between 10 and 50 nm. rGO-Ag and TSA were found to inhibit cell viability in a dose-dependent manner. The combination of rGO-Ag and TSA at low concentration showed a significant effect on cell viability, and increased cytotoxicity by increasing the level of malondialdehyde and decreasing the level of glutathione, and also causing mitochondrial dysfunction. Furthermore, the combination of rGO-Ag and TSA had a more pronounced effect on DNA fragmentation and double-strand breaks, and eventually induced apoptosis. Conclusion: This study is the first to report that the combination of rGO-Ag and TSA can cause potential cytotoxicity and also induce significantly greater cell death compared to either rGO-Ag alone or TSA alone in SKOV3 cells by various mechanisms including reactive oxygen species generation, mitochondrial dysfunction, and DNA damage. Therefore, this combination chemotherapy could be possibly used in advanced cancers that are not suitable for radiation therapy or surgical treatment and facilitate overcoming tumor resistance and disease progression. Keywords: graphene, trichostatin, cytotoxicity, reactive oxygen species, apoptosis, DNA fragmentation, double-strand DNA breakshttps://www.dovepress.com/novel-biomolecule-lycopene-reduced-graphene-oxide-silver-nanoparticle--peer-reviewed-article-IJNGraphene;trichostatincytotoxicityreactive oxygen speciesapoptosisDNA fragmentationdouble strand DNA breaks |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhang XF Huang FH Zhang GL Bai DP Massimo DF Huang YF Gurunathan S |
spellingShingle |
Zhang XF Huang FH Zhang GL Bai DP Massimo DF Huang YF Gurunathan S Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3) International Journal of Nanomedicine Graphene;trichostatin cytotoxicity reactive oxygen species apoptosis DNA fragmentation double strand DNA breaks |
author_facet |
Zhang XF Huang FH Zhang GL Bai DP Massimo DF Huang YF Gurunathan S |
author_sort |
Zhang XF |
title |
Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3) |
title_short |
Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3) |
title_full |
Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3) |
title_fullStr |
Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3) |
title_full_unstemmed |
Novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin A in human ovarian cancer cells (SKOV3) |
title_sort |
novel biomolecule lycopene-reduced graphene oxide-silver nanoparticle enhances apoptotic potential of trichostatin a in human ovarian cancer cells (skov3) |
publisher |
Dove Medical Press |
series |
International Journal of Nanomedicine |
issn |
1178-2013 |
publishDate |
2017-10-01 |
description |
Xi-Feng Zhang,1,2 Feng-Hua Huang,1 Guo-Liang Zhang,3 Ding-Ping Bai,4 De Felici Massimo,5 Yi-Fan Huang,4 Sangiliyandi Gurunathan6 1College of Biological and Pharmaceutical Engineering, Wuhan Polytechnic University, Wuhan, China; 2Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao, China; 3National Engineering Research Center for Gelatin-based Traditional Chinese Medicine, Dong-E-E-Jiao Co., Ltd, DongE, Shandong, China; 4Fujian Key Laboratory of Traditional Chinese Veterinary Medicine and Animal Health, Fujian Agriculture and Forestry University, Fuzhou, China; 5Department of Biomedicine and Prevention, University of Rome ‘Tor Vergata’, Rome, Italy; 6Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, Republic of Korea Background: Recently, there has been much interest in the field of nanomedicine to improve prevention, diagnosis, and treatment. Combination therapy seems to be most effective when two different molecules that work by different mechanisms are combined at low dose, thereby decreasing the possibility of drug resistance and occurrence of unbearable side effects. Based on this consideration, the study was designed to investigate the combination effect of reduced graphene oxide-silver nanoparticles (rGO-AgNPs) and trichostatin A (TSA) in human ovarian cancer cells (SKOV3). Methods: The rGO-AgNPs were synthesized using a biomolecule called lycopene, and the resultant product was characterized by various analytical techniques. The combination effect of rGO-Ag and TSA was investigated in SKOV3 cells using various cellular assays such as cell viability, cytotoxicity, and immunofluorescence analysis. Results: AgNPs were uniformly distributed on the surface of graphene sheet with an average size between 10 and 50 nm. rGO-Ag and TSA were found to inhibit cell viability in a dose-dependent manner. The combination of rGO-Ag and TSA at low concentration showed a significant effect on cell viability, and increased cytotoxicity by increasing the level of malondialdehyde and decreasing the level of glutathione, and also causing mitochondrial dysfunction. Furthermore, the combination of rGO-Ag and TSA had a more pronounced effect on DNA fragmentation and double-strand breaks, and eventually induced apoptosis. Conclusion: This study is the first to report that the combination of rGO-Ag and TSA can cause potential cytotoxicity and also induce significantly greater cell death compared to either rGO-Ag alone or TSA alone in SKOV3 cells by various mechanisms including reactive oxygen species generation, mitochondrial dysfunction, and DNA damage. Therefore, this combination chemotherapy could be possibly used in advanced cancers that are not suitable for radiation therapy or surgical treatment and facilitate overcoming tumor resistance and disease progression. Keywords: graphene, trichostatin, cytotoxicity, reactive oxygen species, apoptosis, DNA fragmentation, double-strand DNA breaks |
topic |
Graphene;trichostatin cytotoxicity reactive oxygen species apoptosis DNA fragmentation double strand DNA breaks |
url |
https://www.dovepress.com/novel-biomolecule-lycopene-reduced-graphene-oxide-silver-nanoparticle--peer-reviewed-article-IJN |
work_keys_str_mv |
AT zhangxf novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 AT huangfh novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 AT zhanggl novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 AT baidp novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 AT massimodf novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 AT huangyf novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 AT gurunathans novelbiomoleculelycopenereducedgrapheneoxidesilvernanoparticleenhancesapoptoticpotentialoftrichostatinainhumanovariancancercellsskov3 |
_version_ |
1725304066094923776 |