Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan.
A high diversity of fungi was discovered on various substrates collected at the marine shallow-water Kueishan Island Hydrothermal Vent Field, Taiwan, using culture and metabarcoding methods but whether these fungi can grow and play an active role in such an extreme environment is unknown. We investi...
Main Authors: | , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2020-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0233621 |
id |
doaj-ea5f8a7636be41be92cbf5758d3558dc |
---|---|
record_format |
Article |
spelling |
doaj-ea5f8a7636be41be92cbf5758d3558dc2021-03-03T21:49:00ZengPublic Library of Science (PLoS)PLoS ONE1932-62032020-01-01155e023362110.1371/journal.pone.0233621Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan.Ka-Lai PangMichael Wai-Lun ChiangSheng-Yu GuoChi-Yu ShihHans U DahmsJiang-Shiou HwangHyo-Jung ChaA high diversity of fungi was discovered on various substrates collected at the marine shallow-water Kueishan Island Hydrothermal Vent Field, Taiwan, using culture and metabarcoding methods but whether these fungi can grow and play an active role in such an extreme environment is unknown. We investigated the combined effects of different salinity, temperature and pH on growth of ten fungi (in the genera Aspergillus, Penicillium, Fodinomyces, Microascus, Trichoderma, Verticillium) isolated from the sediment and the vent crab Xenograpsus testudinatus. The growth responses of the tested fungi could be referred to three groups: (1) wide pH, salinity and temperature ranges, (2) salinity-dependent and temperature-sensitive, and (3) temperature-tolerant. Aspergillus terreus NTOU4989 was the only fungus which showed growth at 45 °C, pH 3 and 30 ‰ salinity, and might be active near the vents. We also carried out a transcriptome analysis to understand the molecular adaptations of A. terreus NTOU4989 under these extreme conditions. Data revealed that stress-related genes were differentially expressed at high temperature (45 °C); for instance, mannitol biosynthetic genes were up-regulated while glutathione S-transferase and amino acid oxidase genes down-regulated in response to high temperature. On the other hand, hydrogen ion transmembrane transport genes and phenylalanine ammonia lyase were up-regulated while pH-response transcription factor was down-regulated at pH 3, a relative acidic environment. However, genes related to salt tolerance, such as glycerol lipid metabolism and mitogen-activated protein kinase, were up-regulated in both conditions, possibly related to maintaining water homeostasis. The results of this study revealed the genetic evidence of adaptation in A. terreus NTOU4989 to changes of environmental conditions.https://doi.org/10.1371/journal.pone.0233621 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ka-Lai Pang Michael Wai-Lun Chiang Sheng-Yu Guo Chi-Yu Shih Hans U Dahms Jiang-Shiou Hwang Hyo-Jung Cha |
spellingShingle |
Ka-Lai Pang Michael Wai-Lun Chiang Sheng-Yu Guo Chi-Yu Shih Hans U Dahms Jiang-Shiou Hwang Hyo-Jung Cha Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. PLoS ONE |
author_facet |
Ka-Lai Pang Michael Wai-Lun Chiang Sheng-Yu Guo Chi-Yu Shih Hans U Dahms Jiang-Shiou Hwang Hyo-Jung Cha |
author_sort |
Ka-Lai Pang |
title |
Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. |
title_short |
Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. |
title_full |
Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. |
title_fullStr |
Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. |
title_full_unstemmed |
Growth study under combined effects of temperature, pH and salinity and transcriptome analysis revealed adaptations of Aspergillus terreus NTOU4989 to the extreme conditions at Kueishan Island Hydrothermal Vent Field, Taiwan. |
title_sort |
growth study under combined effects of temperature, ph and salinity and transcriptome analysis revealed adaptations of aspergillus terreus ntou4989 to the extreme conditions at kueishan island hydrothermal vent field, taiwan. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2020-01-01 |
description |
A high diversity of fungi was discovered on various substrates collected at the marine shallow-water Kueishan Island Hydrothermal Vent Field, Taiwan, using culture and metabarcoding methods but whether these fungi can grow and play an active role in such an extreme environment is unknown. We investigated the combined effects of different salinity, temperature and pH on growth of ten fungi (in the genera Aspergillus, Penicillium, Fodinomyces, Microascus, Trichoderma, Verticillium) isolated from the sediment and the vent crab Xenograpsus testudinatus. The growth responses of the tested fungi could be referred to three groups: (1) wide pH, salinity and temperature ranges, (2) salinity-dependent and temperature-sensitive, and (3) temperature-tolerant. Aspergillus terreus NTOU4989 was the only fungus which showed growth at 45 °C, pH 3 and 30 ‰ salinity, and might be active near the vents. We also carried out a transcriptome analysis to understand the molecular adaptations of A. terreus NTOU4989 under these extreme conditions. Data revealed that stress-related genes were differentially expressed at high temperature (45 °C); for instance, mannitol biosynthetic genes were up-regulated while glutathione S-transferase and amino acid oxidase genes down-regulated in response to high temperature. On the other hand, hydrogen ion transmembrane transport genes and phenylalanine ammonia lyase were up-regulated while pH-response transcription factor was down-regulated at pH 3, a relative acidic environment. However, genes related to salt tolerance, such as glycerol lipid metabolism and mitogen-activated protein kinase, were up-regulated in both conditions, possibly related to maintaining water homeostasis. The results of this study revealed the genetic evidence of adaptation in A. terreus NTOU4989 to changes of environmental conditions. |
url |
https://doi.org/10.1371/journal.pone.0233621 |
work_keys_str_mv |
AT kalaipang growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan AT michaelwailunchiang growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan AT shengyuguo growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan AT chiyushih growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan AT hansudahms growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan AT jiangshiouhwang growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan AT hyojungcha growthstudyundercombinedeffectsoftemperaturephandsalinityandtranscriptomeanalysisrevealedadaptationsofaspergillusterreusntou4989totheextremeconditionsatkueishanislandhydrothermalventfieldtaiwan |
_version_ |
1714814976509607936 |