Construction and Characterization of Representations of SU(7) for GUT Model Builders
The natural extension to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></mat...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-06-01
|
Series: | Symmetry |
Subjects: | |
Online Access: | https://www.mdpi.com/2073-8994/13/6/1044 |
id |
doaj-ea4e88e4c4b746eb9f20a702c03d68d6 |
---|---|
record_format |
Article |
spelling |
doaj-ea4e88e4c4b746eb9f20a702c03d68d62021-06-30T23:45:20ZengMDPI AGSymmetry2073-89942021-06-01131044104410.3390/sym13061044Construction and Characterization of Representations of SU(7) for GUT Model BuildersDaniel Jones0Jeffery A. Secrest1Department of Physics and Astronomy, Armstrong Campus, Georgia Southern University, Savannah, GA 31419, USADepartment of Physics and Astronomy, Armstrong Campus, Georgia Southern University, Savannah, GA 31419, USAThe natural extension to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula> Georgi-Glashow grand unification model is to enlarge the gauge symmetry group. In this work, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> symmetry group is examined. The Cartan subalgebra is determined along with their commutation relations. The associated roots and weights of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> algebra are derived and discussed. The raising and lowering operators are explicitly constructed and presented. Higher dimensional representations are developed by graphical as well as tensorial methods. Applications of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> Lie group to supersymmetric grand unification as well as applications are discussed.https://www.mdpi.com/2073-8994/13/6/1044GUTgrand unified theoriesquarksleptonsgauge symmetry breakinglie algebra |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Daniel Jones Jeffery A. Secrest |
spellingShingle |
Daniel Jones Jeffery A. Secrest Construction and Characterization of Representations of SU(7) for GUT Model Builders Symmetry GUT grand unified theories quarks leptons gauge symmetry breaking lie algebra |
author_facet |
Daniel Jones Jeffery A. Secrest |
author_sort |
Daniel Jones |
title |
Construction and Characterization of Representations of SU(7) for GUT Model Builders |
title_short |
Construction and Characterization of Representations of SU(7) for GUT Model Builders |
title_full |
Construction and Characterization of Representations of SU(7) for GUT Model Builders |
title_fullStr |
Construction and Characterization of Representations of SU(7) for GUT Model Builders |
title_full_unstemmed |
Construction and Characterization of Representations of SU(7) for GUT Model Builders |
title_sort |
construction and characterization of representations of su(7) for gut model builders |
publisher |
MDPI AG |
series |
Symmetry |
issn |
2073-8994 |
publishDate |
2021-06-01 |
description |
The natural extension to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula> Georgi-Glashow grand unification model is to enlarge the gauge symmetry group. In this work, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> symmetry group is examined. The Cartan subalgebra is determined along with their commutation relations. The associated roots and weights of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> algebra are derived and discussed. The raising and lowering operators are explicitly constructed and presented. Higher dimensional representations are developed by graphical as well as tensorial methods. Applications of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> Lie group to supersymmetric grand unification as well as applications are discussed. |
topic |
GUT grand unified theories quarks leptons gauge symmetry breaking lie algebra |
url |
https://www.mdpi.com/2073-8994/13/6/1044 |
work_keys_str_mv |
AT danieljones constructionandcharacterizationofrepresentationsofsu7forgutmodelbuilders AT jefferyasecrest constructionandcharacterizationofrepresentationsofsu7forgutmodelbuilders |
_version_ |
1721350606222786560 |