Construction and Characterization of Representations of SU(7) for GUT Model Builders

The natural extension to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></mat...

Full description

Bibliographic Details
Main Authors: Daniel Jones, Jeffery A. Secrest
Format: Article
Language:English
Published: MDPI AG 2021-06-01
Series:Symmetry
Subjects:
GUT
Online Access:https://www.mdpi.com/2073-8994/13/6/1044
id doaj-ea4e88e4c4b746eb9f20a702c03d68d6
record_format Article
spelling doaj-ea4e88e4c4b746eb9f20a702c03d68d62021-06-30T23:45:20ZengMDPI AGSymmetry2073-89942021-06-01131044104410.3390/sym13061044Construction and Characterization of Representations of SU(7) for GUT Model BuildersDaniel Jones0Jeffery A. Secrest1Department of Physics and Astronomy, Armstrong Campus, Georgia Southern University, Savannah, GA 31419, USADepartment of Physics and Astronomy, Armstrong Campus, Georgia Southern University, Savannah, GA 31419, USAThe natural extension to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula> Georgi-Glashow grand unification model is to enlarge the gauge symmetry group. In this work, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> symmetry group is examined. The Cartan subalgebra is determined along with their commutation relations. The associated roots and weights of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> algebra are derived and discussed. The raising and lowering operators are explicitly constructed and presented. Higher dimensional representations are developed by graphical as well as tensorial methods. Applications of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> Lie group to supersymmetric grand unification as well as applications are discussed.https://www.mdpi.com/2073-8994/13/6/1044GUTgrand unified theoriesquarksleptonsgauge symmetry breakinglie algebra
collection DOAJ
language English
format Article
sources DOAJ
author Daniel Jones
Jeffery A. Secrest
spellingShingle Daniel Jones
Jeffery A. Secrest
Construction and Characterization of Representations of SU(7) for GUT Model Builders
Symmetry
GUT
grand unified theories
quarks
leptons
gauge symmetry breaking
lie algebra
author_facet Daniel Jones
Jeffery A. Secrest
author_sort Daniel Jones
title Construction and Characterization of Representations of SU(7) for GUT Model Builders
title_short Construction and Characterization of Representations of SU(7) for GUT Model Builders
title_full Construction and Characterization of Representations of SU(7) for GUT Model Builders
title_fullStr Construction and Characterization of Representations of SU(7) for GUT Model Builders
title_full_unstemmed Construction and Characterization of Representations of SU(7) for GUT Model Builders
title_sort construction and characterization of representations of su(7) for gut model builders
publisher MDPI AG
series Symmetry
issn 2073-8994
publishDate 2021-06-01
description The natural extension to the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>5</mn><mo>)</mo></mrow></semantics></math></inline-formula> Georgi-Glashow grand unification model is to enlarge the gauge symmetry group. In this work, the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> symmetry group is examined. The Cartan subalgebra is determined along with their commutation relations. The associated roots and weights of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> algebra are derived and discussed. The raising and lowering operators are explicitly constructed and presented. Higher dimensional representations are developed by graphical as well as tensorial methods. Applications of the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>SU</mi><mo>(</mo><mn>7</mn><mo>)</mo></mrow></semantics></math></inline-formula> Lie group to supersymmetric grand unification as well as applications are discussed.
topic GUT
grand unified theories
quarks
leptons
gauge symmetry breaking
lie algebra
url https://www.mdpi.com/2073-8994/13/6/1044
work_keys_str_mv AT danieljones constructionandcharacterizationofrepresentationsofsu7forgutmodelbuilders
AT jefferyasecrest constructionandcharacterizationofrepresentationsofsu7forgutmodelbuilders
_version_ 1721350606222786560