Synthesis, Crystal and Electronic Structures of the Pnictides AE3TrPn3 (AE = Sr, Ba; Tr = Al, Ga; Pn = P, As)

The new ternary arsenides AE3TrAs3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr3GaP3 and Ba3AlP3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr3AlAs3 and Ba3AlAs3 adopt the Ba3AlSb3-type structure...

Full description

Bibliographic Details
Main Authors: Stanislav S. Stoyko, Leonard H. Voss, Hua He, Svilen Bobev
Format: Article
Language:English
Published: MDPI AG 2015-09-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/5/4/433
Description
Summary:The new ternary arsenides AE3TrAs3 (AE = Sr, Ba; Tr = Al, Ga) and their phosphide analogs Sr3GaP3 and Ba3AlP3 have been prepared by reactions of the respective elements at high temperatures. Single-crystal X-ray diffraction studies reveal that Sr3AlAs3 and Ba3AlAs3 adopt the Ba3AlSb3-type structure (Pearson symbol oC56, space group Cmce, Z = 8). This structure is also realized for Sr3GaP3 and Ba3AlP3. The compounds Sr3GaAs3 and Ba3GaAs3 crystallize with the Ba3GaSb3-type structure (Pearson symbol oP56, space group Pnma, Z = 8). Both structures are made up of isolated pairs of edge-shared AlPn4 and GaPn4 tetrahedra (Pn = pnictogen, i.e., P or As), separated by the alkaline-earth Sr2+ and Ba2+ cations. In both cases, there are no homoatomic bonds, hence, regardless of the slightly different atomic arrangements, both structures can be rationalized as valence-precise [AE2+]3[Tr3+][Pn3−]3, or rather [AE2+]6[Tr2Pn6]12−, i.e., as Zintl phases.
ISSN:2073-4352