Stereo Image Coder Based on the MRF Model for Disparity Compensation
<p/> <p>This paper presents a stereoscopic image coder based on the MRF model and MAP estimation of the disparity field. The MRF model minimizes the noise of disparity compensation, because it takes into account the residual energy, smoothness constraints on the disparity field, and the...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2006-01-01
|
Series: | EURASIP Journal on Advances in Signal Processing |
Online Access: | http://dx.doi.org/10.1155/ASP/2006/73950 |
id |
doaj-ea05f22ae43f4e8ea331cf93e9751d3e |
---|---|
record_format |
Article |
spelling |
doaj-ea05f22ae43f4e8ea331cf93e9751d3e2020-11-24T20:59:45ZengSpringerOpenEURASIP Journal on Advances in Signal Processing1687-61721687-61802006-01-0120061073950Stereo Image Coder Based on the MRF Model for Disparity CompensationEllinas JNSangriotis MS<p/> <p>This paper presents a stereoscopic image coder based on the MRF model and MAP estimation of the disparity field. The MRF model minimizes the noise of disparity compensation, because it takes into account the residual energy, smoothness constraints on the disparity field, and the occlusion field. Disparity compensation is formulated as an MAP-MRF problem in the spatial domain, where the MRF field consists of the disparity vector and occlusion fields. The occlusion field is partitioned into three regions by an initial double-threshold setting. The MAP search is conducted in a block-based sense on one or two of the three regions, providing faster execution. The reference and residual images are decomposed by a discrete wavelet transform and the transform coefficients are encoded by employing the morphological representation of wavelet coefficients algorithm. As a result of the morphological encoding, the reference and residual images together with the disparity vector field are transmitted in partitions, lowering total entropy. The experimental evaluation of the proposed scheme on synthetic and real images shows beneficial performance over other stereoscopic coders in the literature.</p> http://dx.doi.org/10.1155/ASP/2006/73950 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Ellinas JN Sangriotis MS |
spellingShingle |
Ellinas JN Sangriotis MS Stereo Image Coder Based on the MRF Model for Disparity Compensation EURASIP Journal on Advances in Signal Processing |
author_facet |
Ellinas JN Sangriotis MS |
author_sort |
Ellinas JN |
title |
Stereo Image Coder Based on the MRF Model for Disparity Compensation |
title_short |
Stereo Image Coder Based on the MRF Model for Disparity Compensation |
title_full |
Stereo Image Coder Based on the MRF Model for Disparity Compensation |
title_fullStr |
Stereo Image Coder Based on the MRF Model for Disparity Compensation |
title_full_unstemmed |
Stereo Image Coder Based on the MRF Model for Disparity Compensation |
title_sort |
stereo image coder based on the mrf model for disparity compensation |
publisher |
SpringerOpen |
series |
EURASIP Journal on Advances in Signal Processing |
issn |
1687-6172 1687-6180 |
publishDate |
2006-01-01 |
description |
<p/> <p>This paper presents a stereoscopic image coder based on the MRF model and MAP estimation of the disparity field. The MRF model minimizes the noise of disparity compensation, because it takes into account the residual energy, smoothness constraints on the disparity field, and the occlusion field. Disparity compensation is formulated as an MAP-MRF problem in the spatial domain, where the MRF field consists of the disparity vector and occlusion fields. The occlusion field is partitioned into three regions by an initial double-threshold setting. The MAP search is conducted in a block-based sense on one or two of the three regions, providing faster execution. The reference and residual images are decomposed by a discrete wavelet transform and the transform coefficients are encoded by employing the morphological representation of wavelet coefficients algorithm. As a result of the morphological encoding, the reference and residual images together with the disparity vector field are transmitted in partitions, lowering total entropy. The experimental evaluation of the proposed scheme on synthetic and real images shows beneficial performance over other stereoscopic coders in the literature.</p> |
url |
http://dx.doi.org/10.1155/ASP/2006/73950 |
work_keys_str_mv |
AT ellinasjn stereoimagecoderbasedonthemrfmodelfordisparitycompensation AT sangriotisms stereoimagecoderbasedonthemrfmodelfordisparitycompensation |
_version_ |
1716781651427590144 |