A Liouville Type Result for Schrödinger Equation on Half-Spaces

We consider a nonlinear Schrödinger equation with a singular potential on half spaces. Using a Hardy-type inequality and the moving plane method, we obtain a Liouville type result for its nonnegative solutions.

Bibliographic Details
Main Author: Baiyu Liu
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:Abstract and Applied Analysis
Online Access:http://dx.doi.org/10.1155/2013/957468
id doaj-e9fa9d3d8fec4d72a351b811a941ee75
record_format Article
spelling doaj-e9fa9d3d8fec4d72a351b811a941ee752020-11-25T01:57:41ZengHindawi LimitedAbstract and Applied Analysis1085-33751687-04092013-01-01201310.1155/2013/957468957468A Liouville Type Result for Schrödinger Equation on Half-SpacesBaiyu Liu0School of Mathematics and Physics, University of Science and Technology, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, ChinaWe consider a nonlinear Schrödinger equation with a singular potential on half spaces. Using a Hardy-type inequality and the moving plane method, we obtain a Liouville type result for its nonnegative solutions.http://dx.doi.org/10.1155/2013/957468
collection DOAJ
language English
format Article
sources DOAJ
author Baiyu Liu
spellingShingle Baiyu Liu
A Liouville Type Result for Schrödinger Equation on Half-Spaces
Abstract and Applied Analysis
author_facet Baiyu Liu
author_sort Baiyu Liu
title A Liouville Type Result for Schrödinger Equation on Half-Spaces
title_short A Liouville Type Result for Schrödinger Equation on Half-Spaces
title_full A Liouville Type Result for Schrödinger Equation on Half-Spaces
title_fullStr A Liouville Type Result for Schrödinger Equation on Half-Spaces
title_full_unstemmed A Liouville Type Result for Schrödinger Equation on Half-Spaces
title_sort liouville type result for schrödinger equation on half-spaces
publisher Hindawi Limited
series Abstract and Applied Analysis
issn 1085-3375
1687-0409
publishDate 2013-01-01
description We consider a nonlinear Schrödinger equation with a singular potential on half spaces. Using a Hardy-type inequality and the moving plane method, we obtain a Liouville type result for its nonnegative solutions.
url http://dx.doi.org/10.1155/2013/957468
work_keys_str_mv AT baiyuliu aliouvilletyperesultforschrodingerequationonhalfspaces
AT baiyuliu liouvilletyperesultforschrodingerequationonhalfspaces
_version_ 1724973157016666112