ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI

The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solut...

Full description

Bibliographic Details
Main Authors: F. MUHAMMAD ZAIN, M. GARDA KHADAFI, P. H. GUNAWAN
Format: Article
Language:English
Published: Universitas Udayana 2018-02-01
Series:E-Jurnal Matematika
Online Access:https://ojs.unud.ac.id/index.php/mtk/article/view/37596
id doaj-e9cb2b4b94da4825816f0d548f0f59e8
record_format Article
spelling doaj-e9cb2b4b94da4825816f0d548f0f59e82020-11-24T21:54:46ZengUniversitas UdayanaE-Jurnal Matematika2303-17512018-02-01711410.24843/MTK.2018.v07.i01.p17637596ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSIF. MUHAMMAD ZAIN0M. GARDA KHADAFI1P. H. GUNAWAN2Universitas TelkomUniversitas TelkomUniversitas TelkomThe diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.https://ojs.unud.ac.id/index.php/mtk/article/view/37596
collection DOAJ
language English
format Article
sources DOAJ
author F. MUHAMMAD ZAIN
M. GARDA KHADAFI
P. H. GUNAWAN
spellingShingle F. MUHAMMAD ZAIN
M. GARDA KHADAFI
P. H. GUNAWAN
ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
E-Jurnal Matematika
author_facet F. MUHAMMAD ZAIN
M. GARDA KHADAFI
P. H. GUNAWAN
author_sort F. MUHAMMAD ZAIN
title ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_short ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_full ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_fullStr ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_full_unstemmed ANALISIS KONVERGENSI METODE BEDA HINGGA DALAM MENGHAMPIRI PERSAMAAN DIFUSI
title_sort analisis konvergensi metode beda hingga dalam menghampiri persamaan difusi
publisher Universitas Udayana
series E-Jurnal Matematika
issn 2303-1751
publishDate 2018-02-01
description The diffusion equation or known as heat equation is a parabolic and linear type of partial differential equation. One of the numerical method to approximate the solution of diffusion equations is Finite Difference Method (FDM). In this study, the analysis of numerical convergence of FDM to the solution of diffusion equation is discussed. The analytical solution of diffusion equation is given by the separation of variables approach. Here, the result show the convergence of rate the numerical method is approximately approach 2. This result is in a good agreement with the spatial error from Taylor expansion of spatial second derivative.
url https://ojs.unud.ac.id/index.php/mtk/article/view/37596
work_keys_str_mv AT fmuhammadzain analisiskonvergensimetodebedahinggadalammenghampiripersamaandifusi
AT mgardakhadafi analisiskonvergensimetodebedahinggadalammenghampiripersamaandifusi
AT phgunawan analisiskonvergensimetodebedahinggadalammenghampiripersamaandifusi
_version_ 1725865841960943616