Positive and monotone solutions of an m-point boundary-value problem

We study the second-order ordinary differential equation $$ y''(t)=-f(t,y(t),y'(t)),quad 0leq tleq 1, $$ subject to the multi-point boundary conditions $$ alpha y(0)pm eta y'(0)=0,quad y(1)=sum_{i=1}^{m-2}alpha_iy(xi_i),. $$ We prove the existence of a positive solution (and mono...

Full description

Bibliographic Details
Main Author: Panos K. Palamides
Format: Article
Language:English
Published: Texas State University 2002-02-01
Series:Electronic Journal of Differential Equations
Subjects:
Online Access:http://ejde.math.txstate.edu/Volumes/2002/18/abstr.html

Similar Items