Design and Parameter Study of a Self-Compensating Hydrostatic Rotary Bearing

The influence of design parameters on the static performance of a newly designed self-compensating hydrostatic rotary bearing was investigated. The bearing was designed by incorporating the main attributes of angled-surface self-compensating bearing and opposed-pad self-compensating bearing. A gover...

Full description

Bibliographic Details
Main Authors: Xiaobo Zuo, Shengyi Li, Ziqiang Yin, Jianmin Wang
Format: Article
Language:English
Published: Hindawi Limited 2013-01-01
Series:International Journal of Rotating Machinery
Online Access:http://dx.doi.org/10.1155/2013/638193
Description
Summary:The influence of design parameters on the static performance of a newly designed self-compensating hydrostatic rotary bearing was investigated. The bearing was designed by incorporating the main attributes of angled-surface self-compensating bearing and opposed-pad self-compensating bearing. A governing model based on flow conservation was built to theoretically study the static performance, and the methodology was validated by experiments. It is pointed out that the influence factors on the bearing static performance are the designed resistance ratio of the restricting land to the bearing land, the inner resistance ratio of the land between pockets to that between the pocket and the drain groove, the initial clearance ratio of the restricting gap to the bearing gap, and the semiconical angle. Their effects on the load carrying capacity and stiffness were investigated by simulation. Results show that the optimum designed resistance ratio is 1; the initial clearance ratio should be small, and the inner resistance ratio should be large.
ISSN:1023-621X
1542-3034