The Sub-Supersolution Method and Extremal Solutions of Quasilinear Elliptic Equations in Orlicz-Sobolev Spaces
We prove the existence of extremal solutions of the following quasilinear elliptic problem -∑i=1N∂/∂xiai(x,u(x),Du(x))+g(x,u(x),Du(x))=0 under Dirichlet boundary condition in Orlicz-Sobolev spaces W01LM(Ω) and give the enclosure of solutions. The differential part is driven by a Leray-Lions operator...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Journal of Function Spaces |
Online Access: | http://dx.doi.org/10.1155/2018/8104901 |
Summary: | We prove the existence of extremal solutions of the following quasilinear elliptic problem -∑i=1N∂/∂xiai(x,u(x),Du(x))+g(x,u(x),Du(x))=0 under Dirichlet boundary condition in Orlicz-Sobolev spaces W01LM(Ω) and give the enclosure of solutions. The differential part is driven by a Leray-Lions operator in Orlicz-Sobolev spaces, while the nonlinear term g:Ω×R×RN→R is a Carathéodory function satisfying a growth condition. Our approach relies on the method of linear functional analysis theory and the sub-supersolution method. |
---|---|
ISSN: | 2314-8896 2314-8888 |