Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm
The aim of this paper is to introduce the grey wolf optimization (GWO) algorithm to the electromagnetics and antenna community. GWO is a new nature-inspired metaheuristic algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It has potential to exhibit high performance in s...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2016-01-01
|
Series: | International Journal of Antennas and Propagation |
Online Access: | http://dx.doi.org/10.1155/2016/1205970 |
id |
doaj-e98ab85aab1a4dc38dbd5d91e818e3a3 |
---|---|
record_format |
Article |
spelling |
doaj-e98ab85aab1a4dc38dbd5d91e818e3a32020-11-24T21:21:29ZengHindawi LimitedInternational Journal of Antennas and Propagation1687-58691687-58772016-01-01201610.1155/2016/12059701205970Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization AlgorithmPrerna Saxena0Ashwin Kothari1Department of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, IndiaDepartment of Electronics and Communication Engineering, Visvesvaraya National Institute of Technology, Nagpur 440010, IndiaThe aim of this paper is to introduce the grey wolf optimization (GWO) algorithm to the electromagnetics and antenna community. GWO is a new nature-inspired metaheuristic algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It has potential to exhibit high performance in solving not only unconstrained but also constrained optimization problems. In this work, GWO has been applied to linear antenna arrays for optimal pattern synthesis in the following ways: by optimizing the antenna positions while assuming uniform excitation and by optimizing the antenna current amplitudes while assuming spacing and phase as that of uniform array. GWO is used to achieve an array pattern with minimum side lobe level (SLL) along with null placement in the specified directions. GWO is also applied for the minimization of the first side lobe nearest to the main beam (near side lobe). Various examples are presented that illustrate the application of GWO for linear array optimization and, subsequently, the results are validated by benchmarking with results obtained using other state-of-the-art nature-inspired evolutionary algorithms. The results suggest that optimization of linear antenna arrays using GWO provides considerable enhancements compared to the uniform array and the synthesis obtained from other optimization techniques.http://dx.doi.org/10.1155/2016/1205970 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Prerna Saxena Ashwin Kothari |
spellingShingle |
Prerna Saxena Ashwin Kothari Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm International Journal of Antennas and Propagation |
author_facet |
Prerna Saxena Ashwin Kothari |
author_sort |
Prerna Saxena |
title |
Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm |
title_short |
Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm |
title_full |
Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm |
title_fullStr |
Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm |
title_full_unstemmed |
Optimal Pattern Synthesis of Linear Antenna Array Using Grey Wolf Optimization Algorithm |
title_sort |
optimal pattern synthesis of linear antenna array using grey wolf optimization algorithm |
publisher |
Hindawi Limited |
series |
International Journal of Antennas and Propagation |
issn |
1687-5869 1687-5877 |
publishDate |
2016-01-01 |
description |
The aim of this paper is to introduce the grey wolf optimization (GWO) algorithm to the electromagnetics and antenna community. GWO is a new nature-inspired metaheuristic algorithm inspired by the social hierarchy and hunting behavior of grey wolves. It has potential to exhibit high performance in solving not only unconstrained but also constrained optimization problems. In this work, GWO has been applied to linear antenna arrays for optimal pattern synthesis in the following ways: by optimizing the antenna positions while assuming uniform excitation and by optimizing the antenna current amplitudes while assuming spacing and phase as that of uniform array. GWO is used to achieve an array pattern with minimum side lobe level (SLL) along with null placement in the specified directions. GWO is also applied for the minimization of the first side lobe nearest to the main beam (near side lobe). Various examples are presented that illustrate the application of GWO for linear array optimization and, subsequently, the results are validated by benchmarking with results obtained using other state-of-the-art nature-inspired evolutionary algorithms. The results suggest that optimization of linear antenna arrays using GWO provides considerable enhancements compared to the uniform array and the synthesis obtained from other optimization techniques. |
url |
http://dx.doi.org/10.1155/2016/1205970 |
work_keys_str_mv |
AT prernasaxena optimalpatternsynthesisoflinearantennaarrayusinggreywolfoptimizationalgorithm AT ashwinkothari optimalpatternsynthesisoflinearantennaarrayusinggreywolfoptimizationalgorithm |
_version_ |
1725999671316316160 |