Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments
<p>The inaccurate quantification of personal exposure to air pollution introduces error and bias in health estimations, severely limiting causal inference in epidemiological research worldwide. Rapid advancements in affordable, miniaturised air pollution sensor technologies offer the potential...
Main Authors: | , , , , , , , , , , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Copernicus Publications
2019-08-01
|
Series: | Atmospheric Measurement Techniques |
Online Access: | https://www.atmos-meas-tech.net/12/4643/2019/amt-12-4643-2019.pdf |
id |
doaj-e98a8ac13e1c4fc8a0f93885844f30cc |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
L. Chatzidiakou A. Krause O. A. M. Popoola A. Di Antonio M. Kellaway Y. Han Y. Han Y. Han F. A. Squires T. Wang T. Wang H. Zhang H. Zhang H. Zhang Q. Wang Q. Wang Y. Fan Y. Fan S. Chen M. Hu M. Hu J. K. Quint B. Barratt B. Barratt B. Barratt F. J. Kelly F. J. Kelly F. J. Kelly T. Zhu T. Zhu R. L. Jones |
spellingShingle |
L. Chatzidiakou A. Krause O. A. M. Popoola A. Di Antonio M. Kellaway Y. Han Y. Han Y. Han F. A. Squires T. Wang T. Wang H. Zhang H. Zhang H. Zhang Q. Wang Q. Wang Y. Fan Y. Fan S. Chen M. Hu M. Hu J. K. Quint B. Barratt B. Barratt B. Barratt F. J. Kelly F. J. Kelly F. J. Kelly T. Zhu T. Zhu R. L. Jones Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments Atmospheric Measurement Techniques |
author_facet |
L. Chatzidiakou A. Krause O. A. M. Popoola A. Di Antonio M. Kellaway Y. Han Y. Han Y. Han F. A. Squires T. Wang T. Wang H. Zhang H. Zhang H. Zhang Q. Wang Q. Wang Y. Fan Y. Fan S. Chen M. Hu M. Hu J. K. Quint B. Barratt B. Barratt B. Barratt F. J. Kelly F. J. Kelly F. J. Kelly T. Zhu T. Zhu R. L. Jones |
author_sort |
L. Chatzidiakou |
title |
Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments |
title_short |
Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments |
title_full |
Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments |
title_fullStr |
Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments |
title_full_unstemmed |
Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments |
title_sort |
characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environments |
publisher |
Copernicus Publications |
series |
Atmospheric Measurement Techniques |
issn |
1867-1381 1867-8548 |
publishDate |
2019-08-01 |
description |
<p>The inaccurate quantification of personal exposure to air
pollution introduces error and bias in health estimations, severely limiting
causal inference in epidemiological research worldwide. Rapid advancements
in affordable, miniaturised air pollution sensor technologies offer the
potential to address this limitation by capturing the high variability of
personal exposure during daily life in large-scale studies with
unprecedented spatial and temporal resolution. However, concerns remain
regarding the suitability of novel sensing technologies for scientific and
policy purposes. In this paper we characterise the performance of a portable
personal air quality monitor (PAM) that integrates multiple miniaturised
sensors for nitrogen oxides (<span class="inline-formula">NO<sub><i>x</i></sub></span>), carbon monoxide (CO), ozone
(<span class="inline-formula">O<sub>3</sub></span>) and particulate matter (PM) measurements along with temperature,
relative humidity, acceleration, noise and GPS sensors. Overall, the air
pollution sensors showed high reproducibility (mean <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mover accent="true"><mi>R</mi><mo mathvariant="normal">‾</mo></mover><mn mathvariant="normal">2</mn></msup><mo>=</mo><mn mathvariant="normal">0.93</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="bee94480a783d1340ee26eb64ec38285"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-4643-2019-ie00001.svg" width="49pt" height="16pt" src="amt-12-4643-2019-ie00001.png"/></svg:svg></span></span>, min–max: 0.80–1.00) and excellent agreement with
standard instrumentation (mean <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mover accent="true"><mi>R</mi><mo mathvariant="normal">‾</mo></mover><mn mathvariant="normal">2</mn></msup><mo>=</mo><mn mathvariant="normal">0.82</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4a2ee0dd20d927b8a2e5751bbd94cd8e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-4643-2019-ie00002.svg" width="49pt" height="16pt" src="amt-12-4643-2019-ie00002.png"/></svg:svg></span></span>, min–max: 0.54–0.99) in outdoor, indoor and commuting
microenvironments across seasons and different geographical settings. An
important outcome of this study is that the error of the PAM is
significantly smaller than the error introduced when estimating personal
exposure based on sparsely distributed outdoor fixed monitoring stations.
Hence, novel sensing technologies such as the ones demonstrated here can
revolutionise health studies by providing highly resolved reliable exposure
metrics at a large scale to investigate the underlying mechanisms of the
effects of air pollution on health.</p> |
url |
https://www.atmos-meas-tech.net/12/4643/2019/amt-12-4643-2019.pdf |
work_keys_str_mv |
AT lchatzidiakou characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT akrause characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT oampopoola characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT adiantonio characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT mkellaway characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT yhan characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT yhan characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT yhan characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT fasquires characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT twang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT twang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT hzhang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT hzhang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT hzhang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT qwang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT qwang characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT yfan characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT yfan characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT schen characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT mhu characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT mhu characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT jkquint characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT bbarratt characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT bbarratt characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT bbarratt characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT fjkelly characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT fjkelly characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT fjkelly characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT tzhu characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT tzhu characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments AT rljones characterisinglowcostsensorsinhighlyportableplatformstoquantifypersonalexposureindiverseenvironments |
_version_ |
1724980746311958528 |
spelling |
doaj-e98a8ac13e1c4fc8a0f93885844f30cc2020-11-25T01:56:14ZengCopernicus PublicationsAtmospheric Measurement Techniques1867-13811867-85482019-08-01124643465710.5194/amt-12-4643-2019Characterising low-cost sensors in highly portable platforms to quantify personal exposure in diverse environmentsL. Chatzidiakou0A. Krause1O. A. M. Popoola2A. Di Antonio3M. Kellaway4Y. Han5Y. Han6Y. Han7F. A. Squires8T. Wang9T. Wang10H. Zhang11H. Zhang12H. Zhang13Q. Wang14Q. Wang15Y. Fan16Y. Fan17S. Chen18M. Hu19M. Hu20J. K. Quint21B. Barratt22B. Barratt23B. Barratt24F. J. Kelly25F. J. Kelly26F. J. Kelly27T. Zhu28T. Zhu29R. L. Jones30Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UKDepartment of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UKAtmospheric Sensors Ltd, Bedfordshire, SG19 3SH, UKMRC-PHE Centre for Environment & Health, Imperial College London and King's College London, London, W2 1PG, UKCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaDepartment of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UKDepartment of Chemistry, University of York, York, YO10 5DD, UKCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaThe Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, ChinaMRC-PHE Centre for Environment & Health, Imperial College London and King's College London, London, W2 1PG, UKDepartment of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UKNIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, London, SE1 9NH, UKCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaThe Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, ChinaCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaThe Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, ChinaCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaThe Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, ChinaNational Heart and Lung Institute, Imperial College London, SW3 6LR, UKMRC-PHE Centre for Environment & Health, Imperial College London and King's College London, London, W2 1PG, UKDepartment of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UKNIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, London, SE1 9NH, UKMRC-PHE Centre for Environment & Health, Imperial College London and King's College London, London, W2 1PG, UKDepartment of Analytical, Environmental and Forensic Sciences, King's College London, London, SE1 9NH, UKNIHR Health Protection Research Unit in Health Impact of Environmental Hazards, King's College London, London, SE1 9NH, UKCollege of Environmental Sciences and Engineering, Peking University, Beijing, 100871, ChinaThe Beijing Innovation Center for Engineering Science and Advanced Technology, Peking University, Beijing, 100871, ChinaDepartment of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK<p>The inaccurate quantification of personal exposure to air pollution introduces error and bias in health estimations, severely limiting causal inference in epidemiological research worldwide. Rapid advancements in affordable, miniaturised air pollution sensor technologies offer the potential to address this limitation by capturing the high variability of personal exposure during daily life in large-scale studies with unprecedented spatial and temporal resolution. However, concerns remain regarding the suitability of novel sensing technologies for scientific and policy purposes. In this paper we characterise the performance of a portable personal air quality monitor (PAM) that integrates multiple miniaturised sensors for nitrogen oxides (<span class="inline-formula">NO<sub><i>x</i></sub></span>), carbon monoxide (CO), ozone (<span class="inline-formula">O<sub>3</sub></span>) and particulate matter (PM) measurements along with temperature, relative humidity, acceleration, noise and GPS sensors. Overall, the air pollution sensors showed high reproducibility (mean <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M3" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mover accent="true"><mi>R</mi><mo mathvariant="normal">‾</mo></mover><mn mathvariant="normal">2</mn></msup><mo>=</mo><mn mathvariant="normal">0.93</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="bee94480a783d1340ee26eb64ec38285"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-4643-2019-ie00001.svg" width="49pt" height="16pt" src="amt-12-4643-2019-ie00001.png"/></svg:svg></span></span>, min–max: 0.80–1.00) and excellent agreement with standard instrumentation (mean <span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M4" display="inline" overflow="scroll" dspmath="mathml"><mrow><msup><mover accent="true"><mi>R</mi><mo mathvariant="normal">‾</mo></mover><mn mathvariant="normal">2</mn></msup><mo>=</mo><mn mathvariant="normal">0.82</mn></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="49pt" height="16pt" class="svg-formula" dspmath="mathimg" md5hash="4a2ee0dd20d927b8a2e5751bbd94cd8e"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="amt-12-4643-2019-ie00002.svg" width="49pt" height="16pt" src="amt-12-4643-2019-ie00002.png"/></svg:svg></span></span>, min–max: 0.54–0.99) in outdoor, indoor and commuting microenvironments across seasons and different geographical settings. An important outcome of this study is that the error of the PAM is significantly smaller than the error introduced when estimating personal exposure based on sparsely distributed outdoor fixed monitoring stations. Hence, novel sensing technologies such as the ones demonstrated here can revolutionise health studies by providing highly resolved reliable exposure metrics at a large scale to investigate the underlying mechanisms of the effects of air pollution on health.</p>https://www.atmos-meas-tech.net/12/4643/2019/amt-12-4643-2019.pdf |