A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
Abstract We present the features of a model which generalizes Schwarzschild’s homogeneous star by adding a transition zone for the density near the surface. By numerically integrating the modified TOV equations for the $$f(\mathcal {R})=\mathcal {R}+\lambda \mathcal {R}^2$$ f ( R ) = R + λ R 2 Palat...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2021-01-01
|
Series: | European Physical Journal C: Particles and Fields |
Online Access: | https://doi.org/10.1140/epjc/s10052-020-08784-0 |
id |
doaj-e97b867feeaf4c68a3bbd03c47f9b224 |
---|---|
record_format |
Article |
spelling |
doaj-e97b867feeaf4c68a3bbd03c47f9b2242021-01-10T12:53:41ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-01-0181111010.1140/epjc/s10052-020-08784-0A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theoryFernanda Alvarim Silveira0Rodrigo Maier1Santiago Esteban Perez Bergliaffa2Departamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de JaneiroDepartamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de JaneiroDepartamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de JaneiroAbstract We present the features of a model which generalizes Schwarzschild’s homogeneous star by adding a transition zone for the density near the surface. By numerically integrating the modified TOV equations for the $$f(\mathcal {R})=\mathcal {R}+\lambda \mathcal {R}^2$$ f ( R ) = R + λ R 2 Palatini theory, it is shown that the ensuing configurations are everywhere finite. Depending on the values of the relevant parameters, objects more, less or as compact as those obtained in GR with the same density profile have been shown to exist. In particular, in some region of the parameter space the compactness is close to that set by the Buchdahl limit.https://doi.org/10.1140/epjc/s10052-020-08784-0 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Fernanda Alvarim Silveira Rodrigo Maier Santiago Esteban Perez Bergliaffa |
spellingShingle |
Fernanda Alvarim Silveira Rodrigo Maier Santiago Esteban Perez Bergliaffa A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory European Physical Journal C: Particles and Fields |
author_facet |
Fernanda Alvarim Silveira Rodrigo Maier Santiago Esteban Perez Bergliaffa |
author_sort |
Fernanda Alvarim Silveira |
title |
A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory |
title_short |
A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory |
title_full |
A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory |
title_fullStr |
A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory |
title_full_unstemmed |
A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory |
title_sort |
model of compact and ultracompact objects in $$f(\mathcal {r})$$ f ( r ) -palatini theory |
publisher |
SpringerOpen |
series |
European Physical Journal C: Particles and Fields |
issn |
1434-6044 1434-6052 |
publishDate |
2021-01-01 |
description |
Abstract We present the features of a model which generalizes Schwarzschild’s homogeneous star by adding a transition zone for the density near the surface. By numerically integrating the modified TOV equations for the $$f(\mathcal {R})=\mathcal {R}+\lambda \mathcal {R}^2$$ f ( R ) = R + λ R 2 Palatini theory, it is shown that the ensuing configurations are everywhere finite. Depending on the values of the relevant parameters, objects more, less or as compact as those obtained in GR with the same density profile have been shown to exist. In particular, in some region of the parameter space the compactness is close to that set by the Buchdahl limit. |
url |
https://doi.org/10.1140/epjc/s10052-020-08784-0 |
work_keys_str_mv |
AT fernandaalvarimsilveira amodelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory AT rodrigomaier amodelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory AT santiagoestebanperezbergliaffa amodelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory AT fernandaalvarimsilveira modelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory AT rodrigomaier modelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory AT santiagoestebanperezbergliaffa modelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory |
_version_ |
1724342153320071168 |