A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory

Abstract We present the features of a model which generalizes Schwarzschild’s homogeneous star by adding a transition zone for the density near the surface. By numerically integrating the modified TOV equations for the $$f(\mathcal {R})=\mathcal {R}+\lambda \mathcal {R}^2$$ f ( R ) = R + λ R 2 Palat...

Full description

Bibliographic Details
Main Authors: Fernanda Alvarim Silveira, Rodrigo Maier, Santiago Esteban Perez Bergliaffa
Format: Article
Language:English
Published: SpringerOpen 2021-01-01
Series:European Physical Journal C: Particles and Fields
Online Access:https://doi.org/10.1140/epjc/s10052-020-08784-0
id doaj-e97b867feeaf4c68a3bbd03c47f9b224
record_format Article
spelling doaj-e97b867feeaf4c68a3bbd03c47f9b2242021-01-10T12:53:41ZengSpringerOpenEuropean Physical Journal C: Particles and Fields1434-60441434-60522021-01-0181111010.1140/epjc/s10052-020-08784-0A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theoryFernanda Alvarim Silveira0Rodrigo Maier1Santiago Esteban Perez Bergliaffa2Departamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de JaneiroDepartamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de JaneiroDepartamento de Física Teórica, Instituto de Física, Universidade do Estado de Rio de JaneiroAbstract We present the features of a model which generalizes Schwarzschild’s homogeneous star by adding a transition zone for the density near the surface. By numerically integrating the modified TOV equations for the $$f(\mathcal {R})=\mathcal {R}+\lambda \mathcal {R}^2$$ f ( R ) = R + λ R 2 Palatini theory, it is shown that the ensuing configurations are everywhere finite. Depending on the values of the relevant parameters, objects more, less or as compact as those obtained in GR with the same density profile have been shown to exist. In particular, in some region of the parameter space the compactness is close to that set by the Buchdahl limit.https://doi.org/10.1140/epjc/s10052-020-08784-0
collection DOAJ
language English
format Article
sources DOAJ
author Fernanda Alvarim Silveira
Rodrigo Maier
Santiago Esteban Perez Bergliaffa
spellingShingle Fernanda Alvarim Silveira
Rodrigo Maier
Santiago Esteban Perez Bergliaffa
A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
European Physical Journal C: Particles and Fields
author_facet Fernanda Alvarim Silveira
Rodrigo Maier
Santiago Esteban Perez Bergliaffa
author_sort Fernanda Alvarim Silveira
title A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
title_short A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
title_full A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
title_fullStr A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
title_full_unstemmed A model of compact and ultracompact objects in $$f(\mathcal {R})$$ f ( R ) -Palatini theory
title_sort model of compact and ultracompact objects in $$f(\mathcal {r})$$ f ( r ) -palatini theory
publisher SpringerOpen
series European Physical Journal C: Particles and Fields
issn 1434-6044
1434-6052
publishDate 2021-01-01
description Abstract We present the features of a model which generalizes Schwarzschild’s homogeneous star by adding a transition zone for the density near the surface. By numerically integrating the modified TOV equations for the $$f(\mathcal {R})=\mathcal {R}+\lambda \mathcal {R}^2$$ f ( R ) = R + λ R 2 Palatini theory, it is shown that the ensuing configurations are everywhere finite. Depending on the values of the relevant parameters, objects more, less or as compact as those obtained in GR with the same density profile have been shown to exist. In particular, in some region of the parameter space the compactness is close to that set by the Buchdahl limit.
url https://doi.org/10.1140/epjc/s10052-020-08784-0
work_keys_str_mv AT fernandaalvarimsilveira amodelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory
AT rodrigomaier amodelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory
AT santiagoestebanperezbergliaffa amodelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory
AT fernandaalvarimsilveira modelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory
AT rodrigomaier modelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory
AT santiagoestebanperezbergliaffa modelofcompactandultracompactobjectsinfmathcalrfrpalatinitheory
_version_ 1724342153320071168