Modeling fractal structure of city-size distributions using correlation functions.

Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development t...

Full description

Bibliographic Details
Main Author: Yanguang Chen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21949753/?tool=EBI
id doaj-e960582ba3834087a373604e867935db
record_format Article
spelling doaj-e960582ba3834087a373604e867935db2021-03-04T01:32:56ZengPublic Library of Science (PLoS)PLoS ONE1932-62032011-01-0169e2479110.1371/journal.pone.0024791Modeling fractal structure of city-size distributions using correlation functions.Yanguang ChenZipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21949753/?tool=EBI
collection DOAJ
language English
format Article
sources DOAJ
author Yanguang Chen
spellingShingle Yanguang Chen
Modeling fractal structure of city-size distributions using correlation functions.
PLoS ONE
author_facet Yanguang Chen
author_sort Yanguang Chen
title Modeling fractal structure of city-size distributions using correlation functions.
title_short Modeling fractal structure of city-size distributions using correlation functions.
title_full Modeling fractal structure of city-size distributions using correlation functions.
title_fullStr Modeling fractal structure of city-size distributions using correlation functions.
title_full_unstemmed Modeling fractal structure of city-size distributions using correlation functions.
title_sort modeling fractal structure of city-size distributions using correlation functions.
publisher Public Library of Science (PLoS)
series PLoS ONE
issn 1932-6203
publishDate 2011-01-01
description Zipf's law is one the most conspicuous empirical facts for cities, however, there is no convincing explanation for the scaling relation between rank and size and its scaling exponent. Using the idea from general fractals and scaling, I propose a dual competition hypothesis of city development to explain the value intervals and the special value, 1, of the power exponent. Zipf's law and Pareto's law can be mathematically transformed into one another, but represent different processes of urban evolution, respectively. Based on the Pareto distribution, a frequency correlation function can be constructed. By scaling analysis and multifractals spectrum, the parameter interval of Pareto exponent is derived as (0.5, 1]; Based on the Zipf distribution, a size correlation function can be built, and it is opposite to the first one. By the second correlation function and multifractals notion, the Pareto exponent interval is derived as [1, 2). Thus the process of urban evolution falls into two effects: one is the Pareto effect indicating city number increase (external complexity), and the other the Zipf effect indicating city size growth (internal complexity). Because of struggle of the two effects, the scaling exponent varies from 0.5 to 2; but if the two effects reach equilibrium with each other, the scaling exponent approaches 1. A series of mathematical experiments on hierarchical correlation are employed to verify the models and a conclusion can be drawn that if cities in a given region follow Zipf's law, the frequency and size correlations will follow the scaling law. This theory can be generalized to interpret the inverse power-law distributions in various fields of physical and social sciences.
url https://www.ncbi.nlm.nih.gov/pmc/articles/pmid/21949753/?tool=EBI
work_keys_str_mv AT yanguangchen modelingfractalstructureofcitysizedistributionsusingcorrelationfunctions
_version_ 1714809423647473664