Tensile Strength Assessment of Injection-Molded High Yield Sugarcane Bagasse-Reinforced Polypropylene

Sugarcane bagasse was treated to obtain sawdust, in addition to mechanical, thermomechanical, and chemical-thermomechanical pulps. The obtained fibers were used to obtain reinforced polypropylene composites prepared by injection molding. Coupling agent contents ranging from 2 to 10% w/w were added t...

Full description

Bibliographic Details
Main Authors: Ana M. Jiménez, Francesc X. Espinach, Luis A. Granda, Marc Delgado-Aguilar, Germán Camilo Quintana, Pere Fullana-i-Palmer, Pere Mutjé
Format: Article
Language:English
Published: North Carolina State University 2016-06-01
Series:BioResources
Subjects:
Online Access:http://ojs.cnr.ncsu.edu/index.php/BioRes/article/view/BioRes_11_3_6346_Jimenez_Tensile_Strength_Assessment_Injection_Molded
Description
Summary:Sugarcane bagasse was treated to obtain sawdust, in addition to mechanical, thermomechanical, and chemical-thermomechanical pulps. The obtained fibers were used to obtain reinforced polypropylene composites prepared by injection molding. Coupling agent contents ranging from 2 to 10% w/w were added to the composite to obtain the highest tensile strength. All the composites included 30% w/w of reinforcing fibers. The tensile strength of the different sugarcane bagasse fiber composites were tested and discussed. The results were compared with that of other natural fiber- or glass fiber-reinforced polypropylene composites. Pulp-based composites showed higher tensile strength than sawdust-based composites. A micromechanical analysis showed the relationship of some micromechanical properties to the orientation angle, critical length, the intrinsic tensile strength, and the interfacial shear strength. The pulps showed similar intrinsic tensile strengths and were higher than that of sawdust. The properties of the sugarcane bagasse composites compared well with other natural fiber-reinforced composites.
ISSN:1930-2126
1930-2126