Origin and Evolution of the Ore-Forming Fluids in the Liyuan Gold Deposit, Central North China Craton: Constraints from Fluid Inclusions and H-O-C Isotopic Compositions

The Liyuan gold deposit is hosted within Archean basement metamorphic rocks and controlled by the NNE-trending faults in the central North China Craton. The ore-forming processes can be divided into three stages (early, middle, and late). Three types of primary fluid inclusions (FIs) are identified...

Full description

Bibliographic Details
Main Authors: Ying Ma, Suo-Fei Xiong, Hua-Liang Li, Shao-Yong Jiang
Format: Article
Language:English
Published: Hindawi-Wiley 2017-01-01
Series:Geofluids
Online Access:http://dx.doi.org/10.1155/2017/3107280
Description
Summary:The Liyuan gold deposit is hosted within Archean basement metamorphic rocks and controlled by the NNE-trending faults in the central North China Craton. The ore-forming processes can be divided into three stages (early, middle, and late). Three types of primary fluid inclusions (FIs) are identified in the Liyuan, including pure carbonic, carbonic-aqueous, and aqueous inclusions. The primary FIs of three stages are mainly homogenized at temperatures of 318–408°C, 201–329°C, and 136–229°C, with salinities of 2.1–8.9, 0.5–12.4, and 0.4–6.3 wt.% NaCl equivalent, respectively. The main Au mineralization is related to the middle stage, and water-rock interaction caused rapid precipitation of gold in this stage. The initial ore-forming fluids were likely magmatic water or metamorphic fluid and mixed with meteoric water at later stages. Due to the lack of granite body at the present mining levels, we speculate that it was magmatic water that might have been exsolved from a concealed granite body at greater depth or it was metamorphic fluid that was directly transported from depth via deep faults. Based on all the available geological and geochemical evidence, we suggest that the Liyuan deposit belongs to orogenic gold deposit that located in the interior North China Craton.
ISSN:1468-8115
1468-8123