Image Restoration by a Mixed High-Order Total Variation and l1 Regularization Model
Total variation regularization is well-known for recovering sharp edges; however, it usually produces staircase artifacts. In this paper, in order to overcome the shortcoming of total variation regularization, we propose a new variational model combining high-order total variation regularization and...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2018-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2018/6538610 |
Summary: | Total variation regularization is well-known for recovering sharp edges; however, it usually produces staircase artifacts. In this paper, in order to overcome the shortcoming of total variation regularization, we propose a new variational model combining high-order total variation regularization and l1 regularization. The new model has separable structure which enables us to solve the involved subproblems more efficiently. We propose a fast alternating method by employing the fast iterative shrinkage-thresholding algorithm (FISTA) and the alternating direction method of multipliers (ADMM). Compared with some current state-of-the-art methods, numerical experiments show that our proposed model can significantly improve the quality of restored images and obtain higher SNR and SSIM values. |
---|---|
ISSN: | 1024-123X 1563-5147 |