A Hardware Implemented Autocorrelation Technique for Estimating Power Spectral Density for Processing Signals from a Doppler Wind Lidar System

A signal processing technique utilizing autocorrelation of backscattered signals was designed and implemented in a 1.5 µm all-fiber wind sensing Coherent Doppler Lidar (CDL) system to preprocess atmospheric signals. The signal processing algorithm’s design and implementation are p...

Full description

Bibliographic Details
Main Authors: Sameh Abdelazim, David Santoro, Mark Arend, Fred Moshary, Sam Ahmed
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/18/12/4170
Description
Summary:A signal processing technique utilizing autocorrelation of backscattered signals was designed and implemented in a 1.5 µm all-fiber wind sensing Coherent Doppler Lidar (CDL) system to preprocess atmospheric signals. The signal processing algorithm’s design and implementation are presented. The system employs a 20 kHz pulse repetition frequency (PRF) transmitter and samples the return signals at 400 MHz. The logic design of the autocorrelation algorithm was developed and programmed into a field programmable gate array (FPGA) located on a data acquisition board. The design generates and accumulates real time correlograms representing average autocorrelations of the Doppler shifted echo from a series of adjustable range gates. Accumulated correlograms are streamed to a host computer for subsequent processing to yield a line of sight wind velocity. Wind velocity estimates can be obtained under nominal aerosol loading and nominal atmospheric turbulence conditions for ranges up to 3 km.
ISSN:1424-8220