Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank

We study certain physically-relevant subgeometries of binary symplectic polar spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi...

Full description

Bibliographic Details
Main Authors: Metod Saniga, Henri de Boutray, Frédéric Holweck, Alain Giorgetti
Format: Article
Language:English
Published: MDPI AG 2021-09-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/9/18/2272
id doaj-e8fde59285764422a9a280a74d205697
record_format Article
collection DOAJ
language English
format Article
sources DOAJ
author Metod Saniga
Henri de Boutray
Frédéric Holweck
Alain Giorgetti
spellingShingle Metod Saniga
Henri de Boutray
Frédéric Holweck
Alain Giorgetti
Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
Mathematics
N-qubit observables
binary symplectic polar spaces
distinguished sets of doilies
geometric hyperplanes
Veldkamp lines
author_facet Metod Saniga
Henri de Boutray
Frédéric Holweck
Alain Giorgetti
author_sort Metod Saniga
title Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
title_short Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
title_full Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
title_fullStr Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
title_full_unstemmed Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
title_sort taxonomy of polar subspaces of multi-qubit symplectic polar spaces of small rank
publisher MDPI AG
series Mathematics
issn 2227-7390
publishDate 2021-09-01
description We study certain physically-relevant subgeometries of binary symplectic polar spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> of small rank <i>N</i>, when the points of these spaces canonically encode <i>N</i>-qubit observables. Key characteristics of a subspace of such a space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> are: the number of its negative lines, the distribution of types of observables, the character of the geometric hyperplane the subspace shares with the distinguished (non-singular) quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the structure of its Veldkamp space. In particular, we classify and count polar subspaces of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> whose rank is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> features three negative lines of the same type and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s are of five different types. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is endowed with 90 negative lines of two types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s split into 13 types. A total of 279 out of 480 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with three negative lines are composite, i.e., they all originate from the two-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Given a three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and any of its geometric hyperplanes, there are three other <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s possessing the same hyperplane. The same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to host particular sets of seven <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, each of them being uniquely tied to a Conwell heptad with respect to the quadric. There is also a particular type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, a representative of which features a point each line through which is negative. Finally, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>7</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to possess 1908 negative lines of five types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s fall into as many as 29 types. A total of 1524 out of 1560 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with 90 negative lines originate from the three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Remarkably, the difference in the number of negative lines for any two distinct types of four-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s is a multiple of four.
topic N-qubit observables
binary symplectic polar spaces
distinguished sets of doilies
geometric hyperplanes
Veldkamp lines
url https://www.mdpi.com/2227-7390/9/18/2272
work_keys_str_mv AT metodsaniga taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank
AT henrideboutray taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank
AT fredericholweck taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank
AT alaingiorgetti taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank
_version_ 1716870213811568640
spelling doaj-e8fde59285764422a9a280a74d2056972021-09-26T00:38:22ZengMDPI AGMathematics2227-73902021-09-0192272227210.3390/math9182272Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small RankMetod Saniga0Henri de Boutray1Frédéric Holweck2Alain Giorgetti3Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, SlovakiaInstitut FEMTO-ST, DISC–UFR-ST, Université Bourgogne Franche-Comté, F-25030 Besançon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, ICB/UTBM, UMR 6303 CNRS, Université Bourgogne Franche-Comté, F-90010 Belfort, FranceInstitut FEMTO-ST, DISC–UFR-ST, Université Bourgogne Franche-Comté, F-25030 Besançon, FranceWe study certain physically-relevant subgeometries of binary symplectic polar spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> of small rank <i>N</i>, when the points of these spaces canonically encode <i>N</i>-qubit observables. Key characteristics of a subspace of such a space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> are: the number of its negative lines, the distribution of types of observables, the character of the geometric hyperplane the subspace shares with the distinguished (non-singular) quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the structure of its Veldkamp space. In particular, we classify and count polar subspaces of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> whose rank is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> features three negative lines of the same type and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s are of five different types. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is endowed with 90 negative lines of two types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s split into 13 types. A total of 279 out of 480 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with three negative lines are composite, i.e., they all originate from the two-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Given a three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and any of its geometric hyperplanes, there are three other <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s possessing the same hyperplane. The same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to host particular sets of seven <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, each of them being uniquely tied to a Conwell heptad with respect to the quadric. There is also a particular type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, a representative of which features a point each line through which is negative. Finally, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>7</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to possess 1908 negative lines of five types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s fall into as many as 29 types. A total of 1524 out of 1560 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with 90 negative lines originate from the three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Remarkably, the difference in the number of negative lines for any two distinct types of four-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s is a multiple of four.https://www.mdpi.com/2227-7390/9/18/2272N-qubit observablesbinary symplectic polar spacesdistinguished sets of doiliesgeometric hyperplanesVeldkamp lines