Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank
We study certain physically-relevant subgeometries of binary symplectic polar spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2021-09-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/9/18/2272 |
id |
doaj-e8fde59285764422a9a280a74d205697 |
---|---|
record_format |
Article |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Metod Saniga Henri de Boutray Frédéric Holweck Alain Giorgetti |
spellingShingle |
Metod Saniga Henri de Boutray Frédéric Holweck Alain Giorgetti Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank Mathematics N-qubit observables binary symplectic polar spaces distinguished sets of doilies geometric hyperplanes Veldkamp lines |
author_facet |
Metod Saniga Henri de Boutray Frédéric Holweck Alain Giorgetti |
author_sort |
Metod Saniga |
title |
Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank |
title_short |
Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank |
title_full |
Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank |
title_fullStr |
Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank |
title_full_unstemmed |
Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small Rank |
title_sort |
taxonomy of polar subspaces of multi-qubit symplectic polar spaces of small rank |
publisher |
MDPI AG |
series |
Mathematics |
issn |
2227-7390 |
publishDate |
2021-09-01 |
description |
We study certain physically-relevant subgeometries of binary symplectic polar spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> of small rank <i>N</i>, when the points of these spaces canonically encode <i>N</i>-qubit observables. Key characteristics of a subspace of such a space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> are: the number of its negative lines, the distribution of types of observables, the character of the geometric hyperplane the subspace shares with the distinguished (non-singular) quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the structure of its Veldkamp space. In particular, we classify and count polar subspaces of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> whose rank is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> features three negative lines of the same type and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s are of five different types. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is endowed with 90 negative lines of two types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s split into 13 types. A total of 279 out of 480 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with three negative lines are composite, i.e., they all originate from the two-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Given a three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and any of its geometric hyperplanes, there are three other <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s possessing the same hyperplane. The same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to host particular sets of seven <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, each of them being uniquely tied to a Conwell heptad with respect to the quadric. There is also a particular type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, a representative of which features a point each line through which is negative. Finally, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>7</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to possess 1908 negative lines of five types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s fall into as many as 29 types. A total of 1524 out of 1560 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with 90 negative lines originate from the three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Remarkably, the difference in the number of negative lines for any two distinct types of four-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s is a multiple of four. |
topic |
N-qubit observables binary symplectic polar spaces distinguished sets of doilies geometric hyperplanes Veldkamp lines |
url |
https://www.mdpi.com/2227-7390/9/18/2272 |
work_keys_str_mv |
AT metodsaniga taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank AT henrideboutray taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank AT fredericholweck taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank AT alaingiorgetti taxonomyofpolarsubspacesofmultiqubitsymplecticpolarspacesofsmallrank |
_version_ |
1716870213811568640 |
spelling |
doaj-e8fde59285764422a9a280a74d2056972021-09-26T00:38:22ZengMDPI AGMathematics2227-73902021-09-0192272227210.3390/math9182272Taxonomy of Polar Subspaces of Multi-Qubit Symplectic Polar Spaces of Small RankMetod Saniga0Henri de Boutray1Frédéric Holweck2Alain Giorgetti3Astronomical Institute of the Slovak Academy of Sciences, SK-05960 Tatranská Lomnica, SlovakiaInstitut FEMTO-ST, DISC–UFR-ST, Université Bourgogne Franche-Comté, F-25030 Besançon, FranceLaboratoire Interdisciplinaire Carnot de Bourgogne, ICB/UTBM, UMR 6303 CNRS, Université Bourgogne Franche-Comté, F-90010 Belfort, FranceInstitut FEMTO-ST, DISC–UFR-ST, Université Bourgogne Franche-Comté, F-25030 Besançon, FranceWe study certain physically-relevant subgeometries of binary symplectic polar spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> of small rank <i>N</i>, when the points of these spaces canonically encode <i>N</i>-qubit observables. Key characteristics of a subspace of such a space <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> are: the number of its negative lines, the distribution of types of observables, the character of the geometric hyperplane the subspace shares with the distinguished (non-singular) quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and the structure of its Veldkamp space. In particular, we classify and count polar subspaces of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>2</mn><mi>N</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> whose rank is <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>N</mi><mo>−</mo><mn>1</mn></mrow></semantics></math></inline-formula>. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> features three negative lines of the same type and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s are of five different types. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is endowed with 90 negative lines of two types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s split into 13 types. A total of 279 out of 480 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with three negative lines are composite, i.e., they all originate from the two-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Given a three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> and any of its geometric hyperplanes, there are three other <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s possessing the same hyperplane. The same holds if a geometric hyperplane is replaced by a ‘planar’ tricentric triad. A hyperbolic quadric of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to host particular sets of seven <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, each of them being uniquely tied to a Conwell heptad with respect to the quadric. There is also a particular type of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>3</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s, a representative of which features a point each line through which is negative. Finally, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>7</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula> is found to possess 1908 negative lines of five types and its <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s fall into as many as 29 types. A total of 1524 out of 1560 <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s with 90 negative lines originate from the three-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>. Remarkably, the difference in the number of negative lines for any two distinct types of four-qubit <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>W</mi><mo>(</mo><mn>5</mn><mo>,</mo><mn>2</mn><mo>)</mo></mrow></semantics></math></inline-formula>’s is a multiple of four.https://www.mdpi.com/2227-7390/9/18/2272N-qubit observablesbinary symplectic polar spacesdistinguished sets of doiliesgeometric hyperplanesVeldkamp lines |