Summary: | The human mitochondrial DNA (mtDNA) encodes 37 genes, including thirteen proteins essential for the respiratory chain, and RNAs functioning in the mitochondrial translation apparatus. The total number of mtDNA molecules per cell (mtDNA content) is variable between tissue types and also between tumors and their normal counterparts. For breast cancer, tumors tend to be depleted in their mtDNA content compared to adjacent normal mammary tissue. Various studies have shown that primary breast tumors harbor somatic mtDNA variants. A decrease in mtDNA content or the presence of somatic variants could indicate a reduced mitochondrial function within breast cancer. In this explorative study we aimed to further understand genomic changes and expression of the mitochondrial genome within breast cancer, by analyzing RNA sequencing data of primary breast tumor specimens of 344 cases. We demonstrate that somatic variants detected at the mtRNA level are representative for somatic variants in the mtDNA. Also, the number of somatic variants within the mitochondrial transcriptome is not associated with mutational processes impacting the nuclear genome, but is positively associated with age at diagnosis. Finally, we observe that mitochondrial expression is related to ER status. We conclude that there is a large heterogeneity in somatic mutations of the mitochondrial genome within primary breast tumors, and differences in mitochondrial expression among breast cancer subtypes. The exact impact on metabolic differences and clinical relevance deserves further study.
|