Fitting Method of Optimal Energy-Running Time Curve Based on Train Operation Data of an Urban Rail Section

Due to the complexity of the operation control of urban rail transit and diversity requirements for section running time standards, based on actual train operation data, this paper proposes a curve fitting method to find the interrelation between running time and energy consumption. According to fea...

Full description

Bibliographic Details
Main Authors: Lianbo Deng, Hongda Mei, Wenliang Zhou, Enwei Jing
Format: Article
Language:English
Published: Hindawi-Wiley 2021-01-01
Series:Journal of Advanced Transportation
Online Access:http://dx.doi.org/10.1155/2021/6663022
Description
Summary:Due to the complexity of the operation control of urban rail transit and diversity requirements for section running time standards, based on actual train operation data, this paper proposes a curve fitting method to find the interrelation between running time and energy consumption. According to features of the energy consumption-running time curve, the discriminant criterion of outliers is constructed to select the candidate fitting data set from the original data set. To fit the energy consumption-running time curve from two-dimensional scatter points, we propose a B-spline curve fitting method based on a genetic algorithm and the fitting method is proven to have high fitting accuracy and convergence speed. Furthermore, we propose an optimization method for the fitting curve based on dynamic adjustment of the fitting data set which is selected from the candidate fitting data set to obtain the optimal energy-running time curve. The validation of Guangzhou Metro's actual operation data shows that the energy-running time curve fitted and optimized by our method has lower energy and better continuity and smoothness and could be used for evaluation of train drivers’ performance and energy consumption of train operation diagram.
ISSN:0197-6729
2042-3195