Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress
Aim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR tra...
Main Authors: | , , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2020-06-01
|
Series: | Frontiers in Physiology |
Subjects: | |
Online Access: | https://www.frontiersin.org/article/10.3389/fphys.2020.00556/full |
id |
doaj-e876f780696d4e349ec2fe814d54ee74 |
---|---|
record_format |
Article |
spelling |
doaj-e876f780696d4e349ec2fe814d54ee742020-11-25T02:48:49ZengFrontiers Media S.A.Frontiers in Physiology1664-042X2020-06-011110.3389/fphys.2020.00556540005Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular StressJakob L. Nielsen0Ulrik Frandsen1Kasper Y. Jensen2Tatyana A. Prokhorova3Line B. Dalgaard4Rune D. Bech5Tobias Nygaard6Charlotte Suetta7Charlotte Suetta8Per Aagaard9Department of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, DenmarkDepartment of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, DenmarkDepartment of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, DenmarkDepartment of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, DenmarkSection for Sports Science, Department of Public Health, Faculty of Health, Aarhus University, Aarhus, DenmarkDepartment of Orthopaedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, DenmarkDepartment of Orthopaedic Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, DenmarkGeriatric Research Unit, Department of Geriatric and Palliative Medicine, Bispebjerg-Frederiksberg Hospital, University of Copenhagen, Copenhagen, DenmarkGeriatric Research Unit, Department of Medicine, Herlev-Gentofte Hospital, University of Copenhagen, Copenhagen, DenmarkDepartment of Sports Science and Clinical Biomechanics and SDU Muscle Research Cluster, Faculty of Health Sciences, University of Southern Denmark, Odense, DenmarkAim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR training. The present study, therefore, aimed to examine the effect of short-term high-frequency BFR training on human skeletal muscle vascularization.Methods: Participants completed 3 weeks of high-frequency (one to two daily sessions) training consisting of either BFR exercise [(BFRE) n = 10, 22.8 ± 2.3 years; 20% one-repetition maximum (1RM), 100 mmHg] performed to concentric failure or work-matched free-flow exercise [(CON) n = 8, 21.9 ± 3.0 years; 20% 1RM]. Muscle biopsies [vastus lateralis (VL)] were obtained at baseline, 8 days into the intervention, and 3 and 10 days after cessation of the intervention to examine capillary and perivascular adaptations, as well as angiogenesis-related protein signaling and gene expression.Results: Capillary per myofiber and capillary area (CA) increased 21–24 and 25–34%, respectively, in response to BFRE (P < 0.05–0.01), while capillary density (CD) remained unchanged. Overall, these adaptations led to a consistent elevation (15–16%) in the capillary-to-muscle area ratio following BFRE (P < 0.05–0.01). In addition, evaluation of perivascular properties indicated thickening of the perivascular basal membrane following BFRE. No or only minor changes were observed in CON.Conclusion: This study is the first to show that short-term high-frequency, low-load BFRE can lead to microvascular adaptations (i.e., capillary neoformation and changes in morphology), which may contribute to the endurance effects previously documented with BFR training. The observation of perivascular membrane thickening suggests that high-frequency BFRE may be associated with significant vascular stress.https://www.frontiersin.org/article/10.3389/fphys.2020.00556/fullangiogenesiscapillaryhypoxiavascular remodelingvascular stress |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Jakob L. Nielsen Ulrik Frandsen Kasper Y. Jensen Tatyana A. Prokhorova Line B. Dalgaard Rune D. Bech Tobias Nygaard Charlotte Suetta Charlotte Suetta Per Aagaard |
spellingShingle |
Jakob L. Nielsen Ulrik Frandsen Kasper Y. Jensen Tatyana A. Prokhorova Line B. Dalgaard Rune D. Bech Tobias Nygaard Charlotte Suetta Charlotte Suetta Per Aagaard Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress Frontiers in Physiology angiogenesis capillary hypoxia vascular remodeling vascular stress |
author_facet |
Jakob L. Nielsen Ulrik Frandsen Kasper Y. Jensen Tatyana A. Prokhorova Line B. Dalgaard Rune D. Bech Tobias Nygaard Charlotte Suetta Charlotte Suetta Per Aagaard |
author_sort |
Jakob L. Nielsen |
title |
Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress |
title_short |
Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress |
title_full |
Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress |
title_fullStr |
Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress |
title_full_unstemmed |
Skeletal Muscle Microvascular Changes in Response to Short-Term Blood Flow Restricted Training—Exercise-Induced Adaptations and Signs of Perivascular Stress |
title_sort |
skeletal muscle microvascular changes in response to short-term blood flow restricted training—exercise-induced adaptations and signs of perivascular stress |
publisher |
Frontiers Media S.A. |
series |
Frontiers in Physiology |
issn |
1664-042X |
publishDate |
2020-06-01 |
description |
Aim: Previous reports suggest that low-load muscle exercise performed under blood flow restriction (BFR) may lead to endurance adaptations. However, only few and conflicting results exist on the magnitude and timing of microvascular adaptations, overall indicating a lack of angiogenesis with BFR training. The present study, therefore, aimed to examine the effect of short-term high-frequency BFR training on human skeletal muscle vascularization.Methods: Participants completed 3 weeks of high-frequency (one to two daily sessions) training consisting of either BFR exercise [(BFRE) n = 10, 22.8 ± 2.3 years; 20% one-repetition maximum (1RM), 100 mmHg] performed to concentric failure or work-matched free-flow exercise [(CON) n = 8, 21.9 ± 3.0 years; 20% 1RM]. Muscle biopsies [vastus lateralis (VL)] were obtained at baseline, 8 days into the intervention, and 3 and 10 days after cessation of the intervention to examine capillary and perivascular adaptations, as well as angiogenesis-related protein signaling and gene expression.Results: Capillary per myofiber and capillary area (CA) increased 21–24 and 25–34%, respectively, in response to BFRE (P < 0.05–0.01), while capillary density (CD) remained unchanged. Overall, these adaptations led to a consistent elevation (15–16%) in the capillary-to-muscle area ratio following BFRE (P < 0.05–0.01). In addition, evaluation of perivascular properties indicated thickening of the perivascular basal membrane following BFRE. No or only minor changes were observed in CON.Conclusion: This study is the first to show that short-term high-frequency, low-load BFRE can lead to microvascular adaptations (i.e., capillary neoformation and changes in morphology), which may contribute to the endurance effects previously documented with BFR training. The observation of perivascular membrane thickening suggests that high-frequency BFRE may be associated with significant vascular stress. |
topic |
angiogenesis capillary hypoxia vascular remodeling vascular stress |
url |
https://www.frontiersin.org/article/10.3389/fphys.2020.00556/full |
work_keys_str_mv |
AT jakoblnielsen skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT ulrikfrandsen skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT kasperyjensen skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT tatyanaaprokhorova skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT linebdalgaard skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT runedbech skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT tobiasnygaard skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT charlottesuetta skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT charlottesuetta skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress AT peraagaard skeletalmusclemicrovascularchangesinresponsetoshorttermbloodflowrestrictedtrainingexerciseinducedadaptationsandsignsofperivascularstress |
_version_ |
1724746537660055552 |