Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance.
The drought-tolerant 'Ningchun 47' (NC47) and drought-sensitive 'Chinese Spring' (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in res...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2015-01-01
|
Series: | PLoS ONE |
Online Access: | https://doi.org/10.1371/journal.pone.0125302 |
id |
doaj-e816b8e637064bf6a71a931732bda55b |
---|---|
record_format |
Article |
spelling |
doaj-e816b8e637064bf6a71a931732bda55b2021-03-03T20:04:31ZengPublic Library of Science (PLoS)PLoS ONE1932-62032015-01-01105e012530210.1371/journal.pone.0125302Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance.Zhiwei ChengKun DongPei GeYanwei BianLiwei DongXiong DengXiaohui LiYueming YanThe drought-tolerant 'Ningchun 47' (NC47) and drought-sensitive 'Chinese Spring' (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated and recognised using two-dimensional gel electrophoresis. In total, 101 DAP spots representing 77 unique proteins were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These proteins were allocated to 10 groups according to putative functions, which were mainly involved in carbon metabolism (23.4%), photosynthesis/respiration (22.1%) and stress/defence/detoxification (18.2%). Some drought stress-related proteins in NC47, such as enolase, 6-phosphogluconate dehydrogenase, Oxygen-evolving enhancer protein 2, fibrillin-like protein, 2-Cys peroxiredoxin BAS1 and 70-kDa heat shock protein, were more upregulated than those in CS. Multivariate principal components analysis revealed obvious differences between the control and treatments in both NC47 and CS, while cluster analysis showed that the DAPs displayed five and six accumulation patterns in NC47 and CS, respectively. Protein-protein interaction network analysis showed that some key DAPs, such as 2-Cys peroxiredoxin BAS1, RuBisCO large subunit-binding protein, 50S ribosomal protein L1, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase isoenzyme and 70-kDa heat shock protein, with upregulated accumulation in NC47, had complex interactions with other proteins related to amino acid metabolism, carbon metabolism, energy pathway, signal transduction, stress/defence/detoxification, protein folding and nucleotide metabolism. These proteins could play important roles in drought-stress tolerance and contribute to the relatively stronger drought tolerance of NC47.https://doi.org/10.1371/journal.pone.0125302 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Zhiwei Cheng Kun Dong Pei Ge Yanwei Bian Liwei Dong Xiong Deng Xiaohui Li Yueming Yan |
spellingShingle |
Zhiwei Cheng Kun Dong Pei Ge Yanwei Bian Liwei Dong Xiong Deng Xiaohui Li Yueming Yan Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. PLoS ONE |
author_facet |
Zhiwei Cheng Kun Dong Pei Ge Yanwei Bian Liwei Dong Xiong Deng Xiaohui Li Yueming Yan |
author_sort |
Zhiwei Cheng |
title |
Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. |
title_short |
Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. |
title_full |
Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. |
title_fullStr |
Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. |
title_full_unstemmed |
Identification of Leaf Proteins Differentially Accumulated between Wheat Cultivars Distinct in Their Levels of Drought Tolerance. |
title_sort |
identification of leaf proteins differentially accumulated between wheat cultivars distinct in their levels of drought tolerance. |
publisher |
Public Library of Science (PLoS) |
series |
PLoS ONE |
issn |
1932-6203 |
publishDate |
2015-01-01 |
description |
The drought-tolerant 'Ningchun 47' (NC47) and drought-sensitive 'Chinese Spring' (CS) wheat (Triticum aestivum L.) cultivars were treated with different PEG6000 concentrations at the three-leaf stage. An analysis on the physiological and proteomic changes of wheat seedling in response to drought stress was performed. In total, 146 differentially accumulated protein (DAP) spots were separated and recognised using two-dimensional gel electrophoresis. In total, 101 DAP spots representing 77 unique proteins were identified by matrix-assisted laser desorption/ionisation time-of-flight mass spectrometry. These proteins were allocated to 10 groups according to putative functions, which were mainly involved in carbon metabolism (23.4%), photosynthesis/respiration (22.1%) and stress/defence/detoxification (18.2%). Some drought stress-related proteins in NC47, such as enolase, 6-phosphogluconate dehydrogenase, Oxygen-evolving enhancer protein 2, fibrillin-like protein, 2-Cys peroxiredoxin BAS1 and 70-kDa heat shock protein, were more upregulated than those in CS. Multivariate principal components analysis revealed obvious differences between the control and treatments in both NC47 and CS, while cluster analysis showed that the DAPs displayed five and six accumulation patterns in NC47 and CS, respectively. Protein-protein interaction network analysis showed that some key DAPs, such as 2-Cys peroxiredoxin BAS1, RuBisCO large subunit-binding protein, 50S ribosomal protein L1, 6-phosphogluconate dehydrogenase, glyceraldehyde 3-phosphate dehydrogenase isoenzyme and 70-kDa heat shock protein, with upregulated accumulation in NC47, had complex interactions with other proteins related to amino acid metabolism, carbon metabolism, energy pathway, signal transduction, stress/defence/detoxification, protein folding and nucleotide metabolism. These proteins could play important roles in drought-stress tolerance and contribute to the relatively stronger drought tolerance of NC47. |
url |
https://doi.org/10.1371/journal.pone.0125302 |
work_keys_str_mv |
AT zhiweicheng identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT kundong identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT peige identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT yanweibian identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT liweidong identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT xiongdeng identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT xiaohuili identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance AT yuemingyan identificationofleafproteinsdifferentiallyaccumulatedbetweenwheatcultivarsdistinctintheirlevelsofdroughttolerance |
_version_ |
1714824265985949696 |