Numerical conversion efficiency of thermally isolated Seebeck nanoantennas
In this letter, we evaluate the conversion efficiency of thermally isolated Seebeck nanoantennas by numerical simulations and discuss their uses and scope for energy harvesting applications. This analysis includes the simple case of titanium-nickel dipoles suspended in air above the substrate by a 2...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
AIP Publishing LLC
2016-11-01
|
Series: | AIP Advances |
Online Access: | http://dx.doi.org/10.1063/1.4967949 |
Summary: | In this letter, we evaluate the conversion efficiency of thermally isolated Seebeck nanoantennas by numerical simulations and discuss their uses and scope for energy harvesting applications. This analysis includes the simple case of titanium-nickel dipoles suspended in air above the substrate by a 200 nm silicon dioxide membrane to isolate the heat dissipation. Results show that substantially thermal gradients are induced along the devices leading to a harvesting efficiency around 10-4 %, 400 % higher than the previously reported Seebeck nanoantennas. In the light of these results, different optimizing strategies should be considered in order to make the Seebeck nanoantennas useful for harvesting applications. |
---|---|
ISSN: | 2158-3226 |