Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution
This work describes the synthesis of nanocomposites of multiwall carbon nanotubes (MWCNTs) with co-oxide nanocomposite (MWCNTs)/MO. These nanocomposites were prepared using a simple evaporation and drying process. The obtained composites were characterized using X-ray diffraction (XRD), Atomic force...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Universitas Gadjah Mada
2020-05-01
|
Series: | Indonesian Journal of Chemistry |
Subjects: | |
Online Access: | https://jurnal.ugm.ac.id/ijc/article/view/43429 |
id |
doaj-e7e9ae50afe44c0db1312b853dd78efd |
---|---|
record_format |
Article |
spelling |
doaj-e7e9ae50afe44c0db1312b853dd78efd2020-11-25T02:40:33ZengUniversitas Gadjah MadaIndonesian Journal of Chemistry1411-94202460-15782020-05-0120355456610.22146/ijc.4342925454Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous SolutionEmman Jassim Mohammad0Mohanad Mousa Kareem1Abbas Jasim Atiyah Lafta2Department of Chemistry, College of Science, University of Babylon, Hilla 51002, IraqDepartment of Chemistry, College of Science, University of Babylon, Hilla 51002, IraqDepartment of Chemistry, College of Science, University of Babylon, Hilla 51002, IraqThis work describes the synthesis of nanocomposites of multiwall carbon nanotubes (MWCNTs) with co-oxide nanocomposite (MWCNTs)/MO. These nanocomposites were prepared using a simple evaporation and drying process. The obtained composites were characterized using X-ray diffraction (XRD), Atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy (SEM). The activity of the prepared composites was investigated by following the removal of Bismarck brown G dye (BBG) from aqueous solution via adsorption processes and photocatalytic reactions. Different reaction parameters were performed such as the effect of dosage of the used nanocomposite, pH value, and effect of temperature. In addition to that adsorption isotherms and reaction kinetics were investigated. The efficiency of photocatalytic dye removal over the prepared composites was 99.9% after one hour of reaction at the optimal conditions which were mass dosage (0.03 g), pH (5), and temperature (303 K). The adsorption isotherm data were fitted with Langmuir isotherm and the kinetic data were fitted with the pseudo-second-order kinetic model.https://jurnal.ugm.ac.id/ijc/article/view/43429dyes removalbismarck brown gcarbon nanotubesnanocomposite |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Emman Jassim Mohammad Mohanad Mousa Kareem Abbas Jasim Atiyah Lafta |
spellingShingle |
Emman Jassim Mohammad Mohanad Mousa Kareem Abbas Jasim Atiyah Lafta Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution Indonesian Journal of Chemistry dyes removal bismarck brown g carbon nanotubes nanocomposite |
author_facet |
Emman Jassim Mohammad Mohanad Mousa Kareem Abbas Jasim Atiyah Lafta |
author_sort |
Emman Jassim Mohammad |
title |
Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution |
title_short |
Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution |
title_full |
Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution |
title_fullStr |
Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution |
title_full_unstemmed |
Preparation of MWCNTS/Cr<sub>2</sub>O<sub>3</sub>-NiO Nanocomposite for Adsorption and Photocatalytic Removal of Bismarck Brown G Dye from Aqueous Solution |
title_sort |
preparation of mwcnts/cr<sub>2</sub>o<sub>3</sub>-nio nanocomposite for adsorption and photocatalytic removal of bismarck brown g dye from aqueous solution |
publisher |
Universitas Gadjah Mada |
series |
Indonesian Journal of Chemistry |
issn |
1411-9420 2460-1578 |
publishDate |
2020-05-01 |
description |
This work describes the synthesis of nanocomposites of multiwall carbon nanotubes (MWCNTs) with co-oxide nanocomposite (MWCNTs)/MO. These nanocomposites were prepared using a simple evaporation and drying process. The obtained composites were characterized using X-ray diffraction (XRD), Atomic force microscopy (AFM), Fourier Transform Infrared Spectroscopy (FTIR), and scanning electron microscopy (SEM). The activity of the prepared composites was investigated by following the removal of Bismarck brown G dye (BBG) from aqueous solution via adsorption processes and photocatalytic reactions. Different reaction parameters were performed such as the effect of dosage of the used nanocomposite, pH value, and effect of temperature. In addition to that adsorption isotherms and reaction kinetics were investigated. The efficiency of photocatalytic dye removal over the prepared composites was 99.9% after one hour of reaction at the optimal conditions which were mass dosage (0.03 g), pH (5), and temperature (303 K). The adsorption isotherm data were fitted with Langmuir isotherm and the kinetic data were fitted with the pseudo-second-order kinetic model. |
topic |
dyes removal bismarck brown g carbon nanotubes nanocomposite |
url |
https://jurnal.ugm.ac.id/ijc/article/view/43429 |
work_keys_str_mv |
AT emmanjassimmohammad preparationofmwcntscrsub2subosub3subnionanocompositeforadsorptionandphotocatalyticremovalofbismarckbrowngdyefromaqueoussolution AT mohanadmousakareem preparationofmwcntscrsub2subosub3subnionanocompositeforadsorptionandphotocatalyticremovalofbismarckbrowngdyefromaqueoussolution AT abbasjasimatiyahlafta preparationofmwcntscrsub2subosub3subnionanocompositeforadsorptionandphotocatalyticremovalofbismarckbrowngdyefromaqueoussolution |
_version_ |
1715417527505387520 |