An Octahedric Regression Model of Energy Efficiency on Residential Buildings

System modeling is a main task in several research fields. The development of numerical models is of crucial importance at the present because of its wide use in the applications of the generically named machine learning technology, including different kinds of neural networks, random field models,...

Full description

Bibliographic Details
Main Authors: Francisco J. Navarro-Gonzalez, Yolanda Villacampa
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/9/22/4978
Description
Summary:System modeling is a main task in several research fields. The development of numerical models is of crucial importance at the present because of its wide use in the applications of the generically named machine learning technology, including different kinds of neural networks, random field models, and kernel-based methodologies. However, some problems involving the reliability of their predictions are common to their use in the real world. Octahedric regression is a kernel averaged methodology developed by the authors that tries to simplify the entire process from raw data acquisition to model generation. A discussion about the treatment and prevention of overfitting is presented and, as a result, models are obtained that allow for the measurement of this effect. In this paper, this methodology is applied to the problem of estimating the energetic needs of different buildings according to their principal characteristics, a problem that has importance in architecture and civil and environmental engineering due to increasing concerns about energetic efficiency and ecological footprint.
ISSN:2076-3417