Quantum distillation of Hilbert spaces, semi-classics and anomaly matching
Abstract A symmetry-twisted boundary condition of the path integral provides a suitable framework for the semi-classical analysis of nonperturbative quantum field theories (QFTs), and we reinterpret it from the viewpoint of the Hilbert space. An appropriate twist with the unbroken symmetry can poten...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
SpringerOpen
2018-08-01
|
Series: | Journal of High Energy Physics |
Subjects: | |
Online Access: | http://link.springer.com/article/10.1007/JHEP08(2018)068 |
id |
doaj-e7e720fd4f2e4ac5a8ffcbceb720fdbf |
---|---|
record_format |
Article |
spelling |
doaj-e7e720fd4f2e4ac5a8ffcbceb720fdbf2020-11-25T00:43:35ZengSpringerOpenJournal of High Energy Physics1029-84792018-08-012018812910.1007/JHEP08(2018)068Quantum distillation of Hilbert spaces, semi-classics and anomaly matchingGerald V. Dunne0Yuya Tanizaki1Mithat Ünsal2Kavli Institute for Theoretical Physics, University of California Santa BarbaraKavli Institute for Theoretical Physics, University of California Santa BarbaraKavli Institute for Theoretical Physics, University of California Santa BarbaraAbstract A symmetry-twisted boundary condition of the path integral provides a suitable framework for the semi-classical analysis of nonperturbative quantum field theories (QFTs), and we reinterpret it from the viewpoint of the Hilbert space. An appropriate twist with the unbroken symmetry can potentially produce huge cancellations among excited states in the state-sum, without affecting the ground states; we call this effect “quantum distillation”. Quantum distillation can provide the underlying mechanism for adiabatic continuity, by preventing a phase transition under S 1 compactification. We revisit this point via the ’t Hooft anomaly matching condition when it constrains the vacuum structure of the theory on ℝ d and upon compactification. We show that there is a precise relation between the persistence of the anomaly upon compactification, the Hilbert space quantum distillation, and the semi-classical analysis of the corresponding symmetry-twisted path integrals. We motivate quantum distillation in quantum mechanical examples, and then study its non-trivial action in QFT, with the example of the 2D Grassmannian sigma model Gr(N, M). We also discuss the connection of quantum distillation with large-N volume independence and flavor-momentum transmutation.http://link.springer.com/article/10.1007/JHEP08(2018)068Nonperturbative EffectsSigma Models |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Gerald V. Dunne Yuya Tanizaki Mithat Ünsal |
spellingShingle |
Gerald V. Dunne Yuya Tanizaki Mithat Ünsal Quantum distillation of Hilbert spaces, semi-classics and anomaly matching Journal of High Energy Physics Nonperturbative Effects Sigma Models |
author_facet |
Gerald V. Dunne Yuya Tanizaki Mithat Ünsal |
author_sort |
Gerald V. Dunne |
title |
Quantum distillation of Hilbert spaces, semi-classics and anomaly matching |
title_short |
Quantum distillation of Hilbert spaces, semi-classics and anomaly matching |
title_full |
Quantum distillation of Hilbert spaces, semi-classics and anomaly matching |
title_fullStr |
Quantum distillation of Hilbert spaces, semi-classics and anomaly matching |
title_full_unstemmed |
Quantum distillation of Hilbert spaces, semi-classics and anomaly matching |
title_sort |
quantum distillation of hilbert spaces, semi-classics and anomaly matching |
publisher |
SpringerOpen |
series |
Journal of High Energy Physics |
issn |
1029-8479 |
publishDate |
2018-08-01 |
description |
Abstract A symmetry-twisted boundary condition of the path integral provides a suitable framework for the semi-classical analysis of nonperturbative quantum field theories (QFTs), and we reinterpret it from the viewpoint of the Hilbert space. An appropriate twist with the unbroken symmetry can potentially produce huge cancellations among excited states in the state-sum, without affecting the ground states; we call this effect “quantum distillation”. Quantum distillation can provide the underlying mechanism for adiabatic continuity, by preventing a phase transition under S 1 compactification. We revisit this point via the ’t Hooft anomaly matching condition when it constrains the vacuum structure of the theory on ℝ d and upon compactification. We show that there is a precise relation between the persistence of the anomaly upon compactification, the Hilbert space quantum distillation, and the semi-classical analysis of the corresponding symmetry-twisted path integrals. We motivate quantum distillation in quantum mechanical examples, and then study its non-trivial action in QFT, with the example of the 2D Grassmannian sigma model Gr(N, M). We also discuss the connection of quantum distillation with large-N volume independence and flavor-momentum transmutation. |
topic |
Nonperturbative Effects Sigma Models |
url |
http://link.springer.com/article/10.1007/JHEP08(2018)068 |
work_keys_str_mv |
AT geraldvdunne quantumdistillationofhilbertspacessemiclassicsandanomalymatching AT yuyatanizaki quantumdistillationofhilbertspacessemiclassicsandanomalymatching AT mithatunsal quantumdistillationofhilbertspacessemiclassicsandanomalymatching |
_version_ |
1725277565111762944 |