Metal Oxide Gas Sensor Drift Compensation Using a Two-Dimensional Classifier Ensemble

Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for mul...

Full description

Bibliographic Details
Main Authors: Hang Liu, Renzhi Chu, Zhenan Tang
Format: Article
Language:English
Published: MDPI AG 2015-04-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/15/5/10180
Description
Summary:Sensor drift is the most challenging problem in gas sensing at present. We propose a novel two-dimensional classifier ensemble strategy to solve the gas discrimination problem, regardless of the gas concentration, with high accuracy over extended periods of time. This strategy is appropriate for multi-class classifiers that consist of combinations of pairwise classifiers, such as support vector machines. We compare the performance of the strategy with those of competing methods in an experiment based on a public dataset that was compiled over a period of three years. The experimental results demonstrate that the two-dimensional ensemble outperforms the other methods considered. Furthermore, we propose a pre-aging process inspired by that applied to the sensors to improve the stability of the classifier ensemble. The experimental results demonstrate that the weight of each multi-class classifier model in the ensemble remains fairly static before and after the addition of new classifier models to the ensemble, when a pre-aging procedure is applied.
ISSN:1424-8220