Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitu...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2020-12-01
|
Series: | Viruses |
Subjects: | |
Online Access: | https://www.mdpi.com/1999-4915/12/12/1427 |
id |
doaj-e7df51bc780f49a6918a2e114d36b716 |
---|---|
record_format |
Article |
spelling |
doaj-e7df51bc780f49a6918a2e114d36b7162020-12-12T00:05:15ZengMDPI AGViruses1999-49152020-12-01121427142710.3390/v12121427Toward Tightly Tuned Gene Expression Following Lentiviral Vector TransductionAudrey Page0Floriane Fusil1François-Loïc Cosset2CIRI-Centre International de Recherche en Infectiologie, University of Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, FranceCIRI-Centre International de Recherche en Infectiologie, University of Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, FranceCIRI-Centre International de Recherche en Infectiologie, University of Lyon, Université Claude Bernard Lyon 1, Inserm, U1111, CNRS, UMR5308, ENS Lyon, 46 allée d’Italie, F-69007 Lyon, FranceLentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems.https://www.mdpi.com/1999-4915/12/12/1427lentiviral vectorsinductiontransgenesignalsensorintegration |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Audrey Page Floriane Fusil François-Loïc Cosset |
spellingShingle |
Audrey Page Floriane Fusil François-Loïc Cosset Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction Viruses lentiviral vectors induction transgene signal sensor integration |
author_facet |
Audrey Page Floriane Fusil François-Loïc Cosset |
author_sort |
Audrey Page |
title |
Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction |
title_short |
Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction |
title_full |
Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction |
title_fullStr |
Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction |
title_full_unstemmed |
Toward Tightly Tuned Gene Expression Following Lentiviral Vector Transduction |
title_sort |
toward tightly tuned gene expression following lentiviral vector transduction |
publisher |
MDPI AG |
series |
Viruses |
issn |
1999-4915 |
publishDate |
2020-12-01 |
description |
Lentiviral vectors are versatile tools for gene delivery purposes. While in the earlier versions of retroviral vectors, transgene expression was controlled by the long terminal repeats (LTRs), the latter generations of vectors, including those derived from lentiviruses, incorporate internal constitutive or regulated promoters in order to regulate transgene expression. This allows to temporally and/or quantitatively control transgene expression, which is required for many applications such as for clinical applications, when transgene expression is required in specific tissues and at a specific timing. Here we review the main systems that have been developed for transgene regulated expression following lentiviral gene transfer. First, the induction of gene expression can be triggered either by external or by internal cues. Indeed, these regulated vector systems may harbor promoters inducible by exogenous stimuli, such as small molecules (e.g., antibiotics) or temperature variations, offering the possibility to tune rapidly transgene expression in case of adverse events. Second, expression can be indirectly adjusted by playing on inserted sequence copies, for instance by gene excision. Finally, synthetic networks can be developed to sense specific endogenous signals and trigger defined responses after information processing. Regulatable lentiviral vectors (LV)-mediated transgene expression systems have been widely used in basic research to uncover gene functions or to temporally reprogram cells. Clinical applications are also under development to induce therapeutic molecule secretion or to implement safety switches. Such regulatable approaches are currently focusing much attention and will benefit from the development of other technologies in order to launch autonomously controlled systems. |
topic |
lentiviral vectors induction transgene signal sensor integration |
url |
https://www.mdpi.com/1999-4915/12/12/1427 |
work_keys_str_mv |
AT audreypage towardtightlytunedgeneexpressionfollowinglentiviralvectortransduction AT florianefusil towardtightlytunedgeneexpressionfollowinglentiviralvectortransduction AT francoisloiccosset towardtightlytunedgeneexpressionfollowinglentiviralvectortransduction |
_version_ |
1724385948956884992 |