Long-term sphere culture cannot maintain a high ratio of cancer stem cells: a mathematical model and experiment.
Acquiring abundant and high-purity cancer stem cells (CSCs) is an important prerequisite for CSC research. At present, researchers usually gain high-purity CSCs through flow cytometry sorting and expand them by short-term sphere culture. However, it is still uncertain whether we can amplify high-pur...
Main Authors: | , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2011-01-01
|
Series: | PLoS ONE |
Online Access: | http://europepmc.org/articles/PMC3217918?pdf=render |
Summary: | Acquiring abundant and high-purity cancer stem cells (CSCs) is an important prerequisite for CSC research. At present, researchers usually gain high-purity CSCs through flow cytometry sorting and expand them by short-term sphere culture. However, it is still uncertain whether we can amplify high-purity CSCs through long-term sphere culture. We have proposed a mathematical model using ordinary differential equations to derive the continuous variation of the CSC ratio in long-term sphere culture and estimated the model parameters based on a long-term sphere culture of MCF-7 stem cells. We found that the CSC ratio in long-term sphere culture presented as gradually decreased drift and might be stable at a lower level. Furthermore, we found that fitted model parameters could explain the main growth pattern of CSCs and differentiated cancer cells in long-term sphere culture. |
---|---|
ISSN: | 1932-6203 |