Expression and genetic loss of function analysis of the HAT/DESC cluster proteases TMPRSS11A and HAT.

Genome mining at the turn of the millennium uncovered a new family of type II transmembrane serine proteases (TTSPs) that comprises 17 members in humans and 19 in mice. TTSPs phylogenetically belong to one of four subfamilies: matriptase, hepsin/TMPRSS, corin and HAT/DESC. Whereas a wealth of inform...

Full description

Bibliographic Details
Main Authors: Katiuchia Uzzun Sales, John P Hobson, Rebecca Wagenaar-Miller, Roman Szabo, Amber L Rasmussen, Alexandra Bey, Maham F Shah, Alfredo A Molinolo, Thomas H Bugge
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:http://europepmc.org/articles/PMC3154331?pdf=render
Description
Summary:Genome mining at the turn of the millennium uncovered a new family of type II transmembrane serine proteases (TTSPs) that comprises 17 members in humans and 19 in mice. TTSPs phylogenetically belong to one of four subfamilies: matriptase, hepsin/TMPRSS, corin and HAT/DESC. Whereas a wealth of information now has been gathered as to the physiological functions of members of the hepsin/TMPRSS, matriptase, and corin subfamilies of TTSPs, comparatively little is known about the functions of the HAT/DESC subfamily of proteases. Here we perform a combined expression and functional analysis of this TTSP subfamily. We show that the five human and seven murine HAT/DESC proteases are coordinately expressed, suggesting a level of functional redundancy. We also perform a comprehensive phenotypic analysis of mice deficient in two of the most widely expressed HAT/DESC proteases, TMPRSS11A and HAT, and show that the two proteases are dispensable for development, health, and long-term survival in the absence of external challenges or additional genetic deficits. Our comprehensive expression analysis and generation of TMPRSS11A- and HAT-deficient mutant mouse strains provide a valuable resource for the scientific community for further exploration of the HAT/DESC subfamily proteases in physiological and pathological processes.
ISSN:1932-6203