Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database

Accurate mathematical modeling is integral to the ability to interpret diffusion magneticresonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). Inprevious work, we derived expressions to facilitate the determination of the orientationdistribution of axonal and dendriti...

Full description

Bibliographic Details
Main Authors: Mikkel B Hansen, Sune N Jespersen, Lindsey A Leigland, Christopher D Kroenke
Format: Article
Language:English
Published: Frontiers Media S.A. 2013-05-01
Series:Frontiers in Integrative Neuroscience
Subjects:
MRI
Online Access:http://journal.frontiersin.org/Journal/10.3389/fnint.2013.00031/full
id doaj-e7bfd25b36d64ce48afc89ba3450e31d
record_format Article
spelling doaj-e7bfd25b36d64ce48afc89ba3450e31d2020-11-24T22:52:26ZengFrontiers Media S.A.Frontiers in Integrative Neuroscience1662-51452013-05-01710.3389/fnint.2013.0003139412Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org databaseMikkel B Hansen0Sune N Jespersen1Lindsey A Leigland2Christopher D Kroenke3Christopher D Kroenke4Aarhus University HospitalAarhus University HospitalOregon Health & Science UniversityOregon Health & Science UniversityOregon Health & Science UniversityAccurate mathematical modeling is integral to the ability to interpret diffusion magneticresonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). Inprevious work, we derived expressions to facilitate the determination of the orientationdistribution of axonal and dendritic processes from diffusion MR data. Here we utilize neuronreconstructions available in the NeuroMorpho database (www.neuromorpho.org) to assess thevalidity of the model we proposed by comparing morphological properties of the neurons topredictions based on diffusion MR simulations using the reconstructed neuron models. Initially,the method for directly determining neurite orientation distributions is shown to not depend onthe line length used to quantify cylindrical elements. Further variability in neuron morphology ischaracterized relative to neuron type, species, and laboratory of origin. Subsequently, diffusionMR signals are simulated based on human neocortical neuron reconstructions. This reveals a biasin which diffusion MR data predict neuron orientation distributions to have artificially lowanisotropy. This bias is shown to arise from shortcomings (already at relatively low diffusionweighting) in the Gaussian approximation of diffusion, in the presence of restrictive barriers, anddata analysis methods involving higher moments of the cumulant expansion are shown to becapable of reducing the magnitude of the observed bias.http://journal.frontiersin.org/Journal/10.3389/fnint.2013.00031/fullCerebral CortexDiffusionMRIsimulationneuron morphologyCytoarchitecture
collection DOAJ
language English
format Article
sources DOAJ
author Mikkel B Hansen
Sune N Jespersen
Lindsey A Leigland
Christopher D Kroenke
Christopher D Kroenke
spellingShingle Mikkel B Hansen
Sune N Jespersen
Lindsey A Leigland
Christopher D Kroenke
Christopher D Kroenke
Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
Frontiers in Integrative Neuroscience
Cerebral Cortex
Diffusion
MRI
simulation
neuron morphology
Cytoarchitecture
author_facet Mikkel B Hansen
Sune N Jespersen
Lindsey A Leigland
Christopher D Kroenke
Christopher D Kroenke
author_sort Mikkel B Hansen
title Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_short Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_full Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_fullStr Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_full_unstemmed Using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the NeuroMorpho.org database
title_sort using diffusion anisotropy to characterize neuronal morphology in gray matter: the orientation distribution of axons and dendrites in the neuromorpho.org database
publisher Frontiers Media S.A.
series Frontiers in Integrative Neuroscience
issn 1662-5145
publishDate 2013-05-01
description Accurate mathematical modeling is integral to the ability to interpret diffusion magneticresonance (MR) imaging data in terms of cellular structure in brain gray matter (GM). Inprevious work, we derived expressions to facilitate the determination of the orientationdistribution of axonal and dendritic processes from diffusion MR data. Here we utilize neuronreconstructions available in the NeuroMorpho database (www.neuromorpho.org) to assess thevalidity of the model we proposed by comparing morphological properties of the neurons topredictions based on diffusion MR simulations using the reconstructed neuron models. Initially,the method for directly determining neurite orientation distributions is shown to not depend onthe line length used to quantify cylindrical elements. Further variability in neuron morphology ischaracterized relative to neuron type, species, and laboratory of origin. Subsequently, diffusionMR signals are simulated based on human neocortical neuron reconstructions. This reveals a biasin which diffusion MR data predict neuron orientation distributions to have artificially lowanisotropy. This bias is shown to arise from shortcomings (already at relatively low diffusionweighting) in the Gaussian approximation of diffusion, in the presence of restrictive barriers, anddata analysis methods involving higher moments of the cumulant expansion are shown to becapable of reducing the magnitude of the observed bias.
topic Cerebral Cortex
Diffusion
MRI
simulation
neuron morphology
Cytoarchitecture
url http://journal.frontiersin.org/Journal/10.3389/fnint.2013.00031/full
work_keys_str_mv AT mikkelbhansen usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT sunenjespersen usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT lindseyaleigland usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT christopherdkroenke usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
AT christopherdkroenke usingdiffusionanisotropytocharacterizeneuronalmorphologyingraymattertheorientationdistributionofaxonsanddendritesintheneuromorphoorgdatabase
_version_ 1725666107211120640