Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets

We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group <i>G</i> without infinite separable pseudocompact subsets having the following “selective”...

Full description

Bibliographic Details
Main Authors: Dmitri Shakhmatov, Víctor Hugo Yañez
Format: Article
Language:English
Published: MDPI AG 2018-11-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/7/4/86
id doaj-e7b84a332a824a1baeaeb9fe212abf99
record_format Article
spelling doaj-e7b84a332a824a1baeaeb9fe212abf992020-11-25T00:35:07ZengMDPI AGAxioms2075-16802018-11-01748610.3390/axioms7040086axioms7040086Selectively Pseudocompact Groups without Infinite Separable Pseudocompact SubsetsDmitri Shakhmatov0Víctor Hugo Yañez1Division of Mathematics, Physics and Earth Sciences, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, JapanDoctor’s Course, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, JapanWe give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group <i>G</i> without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter <i>p</i> on the set <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">N</mi> </semantics> </math> </inline-formula> of natural numbers and every sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of non-empty open subsets of <i>G</i>, one can choose a point <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula> in such a way that the resulting sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> has a <i>p</i>-limit in <i>G</i>; that is, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>:</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <mi>V</mi> <mo>}</mo> <mo>∈</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> for every neighbourhood <i>V</i> of <i>x</i> in <i>G</i>. In particular, <i>G</i> is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group <i>G</i> above is not pseudo-<inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>-bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⨁</mo> <mrow> <mi>i</mi> <mo>∈</mo> <mi>I</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where each space <inline-formula> <math display="inline"> <semantics> <msub> <mi>X</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> is either maximal or discrete, contains no infinite separable pseudocompact subsets.https://www.mdpi.com/2075-1680/7/4/86pseudocompactstrongly pseudocompactp-compactselectively sequentially pseudocompactpseudo-ω-boundednon-trivial convergent sequenceseparablefree precompact Boolean groupreflexive groupmaximal spaceultrafilter space
collection DOAJ
language English
format Article
sources DOAJ
author Dmitri Shakhmatov
Víctor Hugo Yañez
spellingShingle Dmitri Shakhmatov
Víctor Hugo Yañez
Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
Axioms
pseudocompact
strongly pseudocompact
p-compact
selectively sequentially pseudocompact
pseudo-ω-bounded
non-trivial convergent sequence
separable
free precompact Boolean group
reflexive group
maximal space
ultrafilter space
author_facet Dmitri Shakhmatov
Víctor Hugo Yañez
author_sort Dmitri Shakhmatov
title Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
title_short Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
title_full Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
title_fullStr Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
title_full_unstemmed Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
title_sort selectively pseudocompact groups without infinite separable pseudocompact subsets
publisher MDPI AG
series Axioms
issn 2075-1680
publishDate 2018-11-01
description We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group <i>G</i> without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter <i>p</i> on the set <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">N</mi> </semantics> </math> </inline-formula> of natural numbers and every sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of non-empty open subsets of <i>G</i>, one can choose a point <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula> in such a way that the resulting sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> has a <i>p</i>-limit in <i>G</i>; that is, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>:</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <mi>V</mi> <mo>}</mo> <mo>∈</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> for every neighbourhood <i>V</i> of <i>x</i> in <i>G</i>. In particular, <i>G</i> is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group <i>G</i> above is not pseudo-<inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>-bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⨁</mo> <mrow> <mi>i</mi> <mo>∈</mo> <mi>I</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where each space <inline-formula> <math display="inline"> <semantics> <msub> <mi>X</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> is either maximal or discrete, contains no infinite separable pseudocompact subsets.
topic pseudocompact
strongly pseudocompact
p-compact
selectively sequentially pseudocompact
pseudo-ω-bounded
non-trivial convergent sequence
separable
free precompact Boolean group
reflexive group
maximal space
ultrafilter space
url https://www.mdpi.com/2075-1680/7/4/86
work_keys_str_mv AT dmitrishakhmatov selectivelypseudocompactgroupswithoutinfiniteseparablepseudocompactsubsets
AT victorhugoyanez selectivelypseudocompactgroupswithoutinfiniteseparablepseudocompactsubsets
_version_ 1725310221142720512