Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets
We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group <i>G</i> without infinite separable pseudocompact subsets having the following “selective”...
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2018-11-01
|
Series: | Axioms |
Subjects: | |
Online Access: | https://www.mdpi.com/2075-1680/7/4/86 |
id |
doaj-e7b84a332a824a1baeaeb9fe212abf99 |
---|---|
record_format |
Article |
spelling |
doaj-e7b84a332a824a1baeaeb9fe212abf992020-11-25T00:35:07ZengMDPI AGAxioms2075-16802018-11-01748610.3390/axioms7040086axioms7040086Selectively Pseudocompact Groups without Infinite Separable Pseudocompact SubsetsDmitri Shakhmatov0Víctor Hugo Yañez1Division of Mathematics, Physics and Earth Sciences, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, JapanDoctor’s Course, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, JapanWe give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group <i>G</i> without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter <i>p</i> on the set <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">N</mi> </semantics> </math> </inline-formula> of natural numbers and every sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of non-empty open subsets of <i>G</i>, one can choose a point <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula> in such a way that the resulting sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> has a <i>p</i>-limit in <i>G</i>; that is, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>:</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <mi>V</mi> <mo>}</mo> <mo>∈</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> for every neighbourhood <i>V</i> of <i>x</i> in <i>G</i>. In particular, <i>G</i> is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group <i>G</i> above is not pseudo-<inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>-bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⨁</mo> <mrow> <mi>i</mi> <mo>∈</mo> <mi>I</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where each space <inline-formula> <math display="inline"> <semantics> <msub> <mi>X</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> is either maximal or discrete, contains no infinite separable pseudocompact subsets.https://www.mdpi.com/2075-1680/7/4/86pseudocompactstrongly pseudocompactp-compactselectively sequentially pseudocompactpseudo-ω-boundednon-trivial convergent sequenceseparablefree precompact Boolean groupreflexive groupmaximal spaceultrafilter space |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Dmitri Shakhmatov Víctor Hugo Yañez |
spellingShingle |
Dmitri Shakhmatov Víctor Hugo Yañez Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets Axioms pseudocompact strongly pseudocompact p-compact selectively sequentially pseudocompact pseudo-ω-bounded non-trivial convergent sequence separable free precompact Boolean group reflexive group maximal space ultrafilter space |
author_facet |
Dmitri Shakhmatov Víctor Hugo Yañez |
author_sort |
Dmitri Shakhmatov |
title |
Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets |
title_short |
Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets |
title_full |
Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets |
title_fullStr |
Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets |
title_full_unstemmed |
Selectively Pseudocompact Groups without Infinite Separable Pseudocompact Subsets |
title_sort |
selectively pseudocompact groups without infinite separable pseudocompact subsets |
publisher |
MDPI AG |
series |
Axioms |
issn |
2075-1680 |
publishDate |
2018-11-01 |
description |
We give a “naive” (i.e., using no additional set-theoretic assumptions beyond ZFC, the Zermelo-Fraenkel axioms of set theory augmented by the Axiom of Choice) example of a Boolean topological group <i>G</i> without infinite separable pseudocompact subsets having the following “selective” compactness property: For each free ultrafilter <i>p</i> on the set <inline-formula> <math display="inline"> <semantics> <mi mathvariant="double-struck">N</mi> </semantics> </math> </inline-formula> of natural numbers and every sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> of non-empty open subsets of <i>G</i>, one can choose a point <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <msub> <mi>U</mi> <mi>n</mi> </msub> </mrow> </semantics> </math> </inline-formula> for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> </mrow> </semantics> </math> </inline-formula> in such a way that the resulting sequence <inline-formula> <math display="inline"> <semantics> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>)</mo> </mrow> </semantics> </math> </inline-formula> has a <i>p</i>-limit in <i>G</i>; that is, <inline-formula> <math display="inline"> <semantics> <mrow> <mo>{</mo> <mi>n</mi> <mo>∈</mo> <mi mathvariant="double-struck">N</mi> <mo>:</mo> <msub> <mi>x</mi> <mi>n</mi> </msub> <mo>∈</mo> <mi>V</mi> <mo>}</mo> <mo>∈</mo> <mi>p</mi> </mrow> </semantics> </math> </inline-formula> for every neighbourhood <i>V</i> of <i>x</i> in <i>G</i>. In particular, <i>G</i> is selectively pseudocompact (strongly pseudocompact) but not selectively sequentially pseudocompact. This answers a question of Dorantes-Aldama and the first listed author. The group <i>G</i> above is not pseudo-<inline-formula> <math display="inline"> <semantics> <mi>ω</mi> </semantics> </math> </inline-formula>-bounded either. Furthermore, we show that the free precompact Boolean group of a topological sum <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mo>⨁</mo> <mrow> <mi>i</mi> <mo>∈</mo> <mi>I</mi> </mrow> </msub> <msub> <mi>X</mi> <mi>i</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where each space <inline-formula> <math display="inline"> <semantics> <msub> <mi>X</mi> <mi>i</mi> </msub> </semantics> </math> </inline-formula> is either maximal or discrete, contains no infinite separable pseudocompact subsets. |
topic |
pseudocompact strongly pseudocompact p-compact selectively sequentially pseudocompact pseudo-ω-bounded non-trivial convergent sequence separable free precompact Boolean group reflexive group maximal space ultrafilter space |
url |
https://www.mdpi.com/2075-1680/7/4/86 |
work_keys_str_mv |
AT dmitrishakhmatov selectivelypseudocompactgroupswithoutinfiniteseparablepseudocompactsubsets AT victorhugoyanez selectivelypseudocompactgroupswithoutinfiniteseparablepseudocompactsubsets |
_version_ |
1725310221142720512 |