A General Solution for Troesch's Problem

The homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysi...

Full description

Bibliographic Details
Main Authors: Hector Vazquez-Leal, Yasir Khan, Guillermo Fernández-Anaya, Agustín Herrera-May, Arturo Sarmiento-Reyes, Uriel Filobello-Nino, Víctor-M. Jimenez-Fernández, Domitilo Pereyra-Díaz
Format: Article
Language:English
Published: Hindawi Limited 2012-01-01
Series:Mathematical Problems in Engineering
Online Access:http://dx.doi.org/10.1155/2012/208375
id doaj-e7a76a41df6b497ea6d7ac32f8e5f645
record_format Article
spelling doaj-e7a76a41df6b497ea6d7ac32f8e5f6452020-11-24T22:57:22ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472012-01-01201210.1155/2012/208375208375A General Solution for Troesch's ProblemHector Vazquez-Leal0Yasir Khan1Guillermo Fernández-Anaya2Agustín Herrera-May3Arturo Sarmiento-Reyes4Uriel Filobello-Nino5Víctor-M. Jimenez-Fernández6Domitilo Pereyra-Díaz7Electronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoDepartment of Mathematics, Zhejiang University, Hangzhou 310027, ChinaDepartamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Mexico DF, MexicoMicro and Nanotechnology Research Center, University of Veracruz, Calzada Ruiz Cortines 455, 94292 Boca del Rio, VER, MexicoNational Institute for Astrophysics, Optics and Electronics Luis Enrique Erro No.1, 72840 Santa María Tonantzintla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoElectronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoElectronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoThe homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysis method, Laplace transform decomposition method, and HPM method, the proposed solution shows the highest degree of accuracy in the results for a remarkable wide range of values of Troesch’s parameter.http://dx.doi.org/10.1155/2012/208375
collection DOAJ
language English
format Article
sources DOAJ
author Hector Vazquez-Leal
Yasir Khan
Guillermo Fernández-Anaya
Agustín Herrera-May
Arturo Sarmiento-Reyes
Uriel Filobello-Nino
Víctor-M. Jimenez-Fernández
Domitilo Pereyra-Díaz
spellingShingle Hector Vazquez-Leal
Yasir Khan
Guillermo Fernández-Anaya
Agustín Herrera-May
Arturo Sarmiento-Reyes
Uriel Filobello-Nino
Víctor-M. Jimenez-Fernández
Domitilo Pereyra-Díaz
A General Solution for Troesch's Problem
Mathematical Problems in Engineering
author_facet Hector Vazquez-Leal
Yasir Khan
Guillermo Fernández-Anaya
Agustín Herrera-May
Arturo Sarmiento-Reyes
Uriel Filobello-Nino
Víctor-M. Jimenez-Fernández
Domitilo Pereyra-Díaz
author_sort Hector Vazquez-Leal
title A General Solution for Troesch's Problem
title_short A General Solution for Troesch's Problem
title_full A General Solution for Troesch's Problem
title_fullStr A General Solution for Troesch's Problem
title_full_unstemmed A General Solution for Troesch's Problem
title_sort general solution for troesch's problem
publisher Hindawi Limited
series Mathematical Problems in Engineering
issn 1024-123X
1563-5147
publishDate 2012-01-01
description The homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysis method, Laplace transform decomposition method, and HPM method, the proposed solution shows the highest degree of accuracy in the results for a remarkable wide range of values of Troesch’s parameter.
url http://dx.doi.org/10.1155/2012/208375
work_keys_str_mv AT hectorvazquezleal ageneralsolutionfortroeschsproblem
AT yasirkhan ageneralsolutionfortroeschsproblem
AT guillermofernandezanaya ageneralsolutionfortroeschsproblem
AT agustinherreramay ageneralsolutionfortroeschsproblem
AT arturosarmientoreyes ageneralsolutionfortroeschsproblem
AT urielfilobellonino ageneralsolutionfortroeschsproblem
AT victormjimenezfernandez ageneralsolutionfortroeschsproblem
AT domitilopereyradiaz ageneralsolutionfortroeschsproblem
AT hectorvazquezleal generalsolutionfortroeschsproblem
AT yasirkhan generalsolutionfortroeschsproblem
AT guillermofernandezanaya generalsolutionfortroeschsproblem
AT agustinherreramay generalsolutionfortroeschsproblem
AT arturosarmientoreyes generalsolutionfortroeschsproblem
AT urielfilobellonino generalsolutionfortroeschsproblem
AT victormjimenezfernandez generalsolutionfortroeschsproblem
AT domitilopereyradiaz generalsolutionfortroeschsproblem
_version_ 1725651031544561664