A General Solution for Troesch's Problem
The homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysi...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Hindawi Limited
2012-01-01
|
Series: | Mathematical Problems in Engineering |
Online Access: | http://dx.doi.org/10.1155/2012/208375 |
id |
doaj-e7a76a41df6b497ea6d7ac32f8e5f645 |
---|---|
record_format |
Article |
spelling |
doaj-e7a76a41df6b497ea6d7ac32f8e5f6452020-11-24T22:57:22ZengHindawi LimitedMathematical Problems in Engineering1024-123X1563-51472012-01-01201210.1155/2012/208375208375A General Solution for Troesch's ProblemHector Vazquez-Leal0Yasir Khan1Guillermo Fernández-Anaya2Agustín Herrera-May3Arturo Sarmiento-Reyes4Uriel Filobello-Nino5Víctor-M. Jimenez-Fernández6Domitilo Pereyra-Díaz7Electronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoDepartment of Mathematics, Zhejiang University, Hangzhou 310027, ChinaDepartamento de Física y Matemáticas, Universidad Iberoamericana, Prolongación Paseo de la Reforma 880, 01219 Mexico DF, MexicoMicro and Nanotechnology Research Center, University of Veracruz, Calzada Ruiz Cortines 455, 94292 Boca del Rio, VER, MexicoNational Institute for Astrophysics, Optics and Electronics Luis Enrique Erro No.1, 72840 Santa María Tonantzintla, PUE, MexicoElectronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoElectronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoElectronic Instrumentation and Atmospheric Sciences School, University of Veracruz, Xalapa, VER 91000, MexicoThe homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysis method, Laplace transform decomposition method, and HPM method, the proposed solution shows the highest degree of accuracy in the results for a remarkable wide range of values of Troesch’s parameter.http://dx.doi.org/10.1155/2012/208375 |
collection |
DOAJ |
language |
English |
format |
Article |
sources |
DOAJ |
author |
Hector Vazquez-Leal Yasir Khan Guillermo Fernández-Anaya Agustín Herrera-May Arturo Sarmiento-Reyes Uriel Filobello-Nino Víctor-M. Jimenez-Fernández Domitilo Pereyra-Díaz |
spellingShingle |
Hector Vazquez-Leal Yasir Khan Guillermo Fernández-Anaya Agustín Herrera-May Arturo Sarmiento-Reyes Uriel Filobello-Nino Víctor-M. Jimenez-Fernández Domitilo Pereyra-Díaz A General Solution for Troesch's Problem Mathematical Problems in Engineering |
author_facet |
Hector Vazquez-Leal Yasir Khan Guillermo Fernández-Anaya Agustín Herrera-May Arturo Sarmiento-Reyes Uriel Filobello-Nino Víctor-M. Jimenez-Fernández Domitilo Pereyra-Díaz |
author_sort |
Hector Vazquez-Leal |
title |
A General Solution for Troesch's Problem |
title_short |
A General Solution for Troesch's Problem |
title_full |
A General Solution for Troesch's Problem |
title_fullStr |
A General Solution for Troesch's Problem |
title_full_unstemmed |
A General Solution for Troesch's Problem |
title_sort |
general solution for troesch's problem |
publisher |
Hindawi Limited |
series |
Mathematical Problems in Engineering |
issn |
1024-123X 1563-5147 |
publishDate |
2012-01-01 |
description |
The homotopy perturbation method (HPM) is employed to obtain an approximate solution for the nonlinear differential equation which describes Troesch’s problem. In contrast to other reported solutions obtained by using variational iteration method, decomposition method approximation, homotopy analysis method, Laplace transform decomposition method, and HPM method, the proposed solution shows the highest degree of accuracy in the results for a remarkable wide range of values of Troesch’s parameter. |
url |
http://dx.doi.org/10.1155/2012/208375 |
work_keys_str_mv |
AT hectorvazquezleal ageneralsolutionfortroeschsproblem AT yasirkhan ageneralsolutionfortroeschsproblem AT guillermofernandezanaya ageneralsolutionfortroeschsproblem AT agustinherreramay ageneralsolutionfortroeschsproblem AT arturosarmientoreyes ageneralsolutionfortroeschsproblem AT urielfilobellonino ageneralsolutionfortroeschsproblem AT victormjimenezfernandez ageneralsolutionfortroeschsproblem AT domitilopereyradiaz ageneralsolutionfortroeschsproblem AT hectorvazquezleal generalsolutionfortroeschsproblem AT yasirkhan generalsolutionfortroeschsproblem AT guillermofernandezanaya generalsolutionfortroeschsproblem AT agustinherreramay generalsolutionfortroeschsproblem AT arturosarmientoreyes generalsolutionfortroeschsproblem AT urielfilobellonino generalsolutionfortroeschsproblem AT victormjimenezfernandez generalsolutionfortroeschsproblem AT domitilopereyradiaz generalsolutionfortroeschsproblem |
_version_ |
1725651031544561664 |