Suitability of the Reforming-Controlled Compression Ignition Concept for UAV Applications

Reforming-controlled compression ignition (RefCCI) is a novel approach combining two methods to improve the internal combustion engine’s efficiency and mitigate emissions: low-temperature combustion (LTC) and thermochemical recuperation (TCR). Frequently, the combustion controllability challenge is...

Full description

Bibliographic Details
Main Authors: Amnon Eyal, Leonid Tartakovsky
Format: Article
Language:English
Published: MDPI AG 2020-09-01
Series:Drones
Subjects:
Online Access:https://www.mdpi.com/2504-446X/4/3/60
Description
Summary:Reforming-controlled compression ignition (RefCCI) is a novel approach combining two methods to improve the internal combustion engine’s efficiency and mitigate emissions: low-temperature combustion (LTC) and thermochemical recuperation (TCR). Frequently, the combustion controllability challenge is resolved by simultaneous injection into the cylinder of two fuel types, each on the other edge of the reactivity scale. By changing the low-to-high-reactivity fuel ratio, ignition timing and combustion phasing control can be achieved. The RefCCI principles, benefits, and possible challenges are described in previous publications. However, the suitability of the RefCCI approach for aerial, mainly unmanned aerial vehicle (UAV) platforms has not been studied yet. The main goal of this paper is to examine whether the RefCCI approach can be beneficial for UAV, especially HALE (high-altitude long-endurance) applications. The thermodynamic first-law and the second-law analysis is numerically performed to investigate the RefCCI approach suitability for UAV applications and to assess possible efficiency gains. A comparison with the conventional diesel engine and the previously developed technology of spark ignition (SI) engine with high-pressure TCR is performed in view of UAV peculiarities. The results indicate that the RefCCI system can be beneficial for UAV applications. The RefCCI higher efficiency compared to existing commercial engines compensates the lower heating value of the primary fuel, so the fuel consumption remains almost the same. By optimizing the compression pressure ratio, the RefCCI system efficiency can be improved.
ISSN:2504-446X