MyD88 Polymorphisms and Association with Susceptibility to Salmonella Pullorum

Myeloid differentiation primary response gene 88 (MYD88), a universal adapter protein, plays an important role in activating the nuclear factor-κB (NF-κB) and regulating the expression of proinflammatory genes like tumor necrosis factor (TNF) and interleukin-1 (IL-1), which were highly involved in S...

Full description

Bibliographic Details
Main Authors: Xian-Qing Liu, Fei Wang, Jie Jin, Yu-Guang Zhou, Jin-Shan Ran, Ze-Qing Feng, Yan Wang, Yi-Ping Liu
Format: Article
Language:English
Published: Hindawi Limited 2015-01-01
Series:BioMed Research International
Online Access:http://dx.doi.org/10.1155/2015/692973
Description
Summary:Myeloid differentiation primary response gene 88 (MYD88), a universal adapter protein, plays an important role in activating the nuclear factor-κB (NF-κB) and regulating the expression of proinflammatory genes like tumor necrosis factor (TNF) and interleukin-1 (IL-1), which were highly involved in Salmonella Pullorum infection. To detect the relationship between polymorphisms of the MyD88 gene and Salmonella Pullorum disease, we screened the coding region (CDS) of the MYD88 gene by DNA pool construction and sequencing based on case-control study. Eight single nucleotide polymorphisms (SNPs) in the sequenced fragment (5 exons), 7 known loci and one novel mutation named G4810372T (SNP8), were found in the fifth exon. In addition, we found 7 nonsynonymous substitutions. The allele frequency of only one SNP, g.4810191C > T (SNP1), was significantly different (P<0.05) between case and control groups. The genotype frequencies of SNP1 (g.4810191C > T) and SNP3 (g.4810257G > T) were of significant difference between the case and the control groups (P<0.05). Collectively, SNPs of the MyD88 gene were significantly associated with susceptibility to Salmonella Pullorum infection, which can be used as a disease-resistant marker in chicken. These results provided a theoretical basis for future research on chicken breeding by marker-assisted selection.
ISSN:2314-6133
2314-6141